Cantitate/Preț
Produs

Advances in Knowledge Discovery and Data Mining: 20th Pacific-Asia Conference, PAKDD 2016, Auckland, New Zealand, April 19-22, 2016, Proceedings, Part II: Lecture Notes in Computer Science, cartea 9652

Editat de James Bailey, Latifur Khan, Takashi Washio, Gill Dobbie, Joshua Zhexue Huang, Ruili Wang
en Limba Engleză Paperback – 12 apr 2016
This two-volume set, LNAI 9651 and 9652, constitutes thethoroughly refereed proceedings of the 20th Pacific-Asia Conference on Advancesin Knowledge Discovery and Data Mining, PAKDD 2016, held in Auckland, NewZealand, in April 2016.
The 91 full papers were carefully reviewed andselected from 307 submissions. They are organized in topical sections named:classification; machine learning; applications; novel methods and algorithms;opinion mining and sentiment analysis; clustering; feature extraction andpattern mining; graph and network data; spatiotemporal and image data; anomalydetection and clustering; novel models and algorithms; and text mining andrecommender systems.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 34726 lei  6-8 săpt.
  Springer International Publishing – 12 apr 2016 34726 lei  6-8 săpt.
  Springer International Publishing – 19 mai 2016 34904 lei  6-8 săpt.

Din seria Lecture Notes in Computer Science

Preț: 34726 lei

Preț vechi: 43407 lei
-20% Nou

Puncte Express: 521

Preț estimativ în valută:
6646 6913$ 5486£

Carte tipărită la comandă

Livrare economică 14-28 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319317496
ISBN-10: 3319317490
Pagini: 572
Ilustrații: XXIV, 572 p. 156 illus.
Dimensiuni: 155 x 235 x 31 mm
Greutate: 0.83 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence

Locul publicării:Cham, Switzerland

Cuprins

Classification.- Machine learning.- Applications.- Novel methods and algorithms.- Opinion mining and sentiment analysis.- Clustering.- Feature extraction and pattern mining.- Graph and network data.- Spatiotemporal and image data.- Anomaly detection and clustering.- Novel models and algorithms.- Text mining and recommender systems.

Caracteristici

Includes supplementary material: sn.pub/extras