Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part III: Lecture Notes in Computer Science, cartea 12714
Editat de Kamal Karlapalem, Hong Cheng, Naren Ramakrishnan, R. K. Agrawal, P. Krishna Reddy, Jaideep Srivastava, Tanmoy Chakrabortyen Limba Engleză Paperback – 8 mai 2021
Part I: Applications of knowledge discovery and data mining of specialized data;
Part II: Classical data mining; data mining theory and principles; recommender systems; and text analytics;
Part III: Representation learning and embedding, and learning from data.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (3) | 584.58 lei 6-8 săpt. | |
Springer International Publishing – 8 mai 2021 | 584.58 lei 6-8 săpt. | |
Springer International Publishing – 8 mai 2021 | 656.81 lei 6-8 săpt. | |
Springer International Publishing – 9 mai 2021 | 660.20 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20% Preț: 571.63 lei
- 20% Preț: 336.71 lei
- 20% Preț: 333.46 lei
- 20% Preț: 662.76 lei
- 20% Preț: 330.23 lei
- 20% Preț: 747.79 lei
- 20% Preț: 438.67 lei
- 20% Preț: 369.12 lei
- 20% Preț: 315.76 lei
- 20% Preț: 584.40 lei
- 20% Preț: 148.66 lei
- 20% Preț: 122.89 lei
- 20% Preț: 315.18 lei
- 20% Preț: 256.26 lei
- 20% Preț: 1040.03 lei
- 20% Preț: 504.56 lei
- Preț: 402.62 lei
- 20% Preț: 346.40 lei
- 20% Preț: 301.94 lei
- 20% Preț: 237.99 lei
- 5% Preț: 365.59 lei
- 20% Preț: 309.89 lei
- 20% Preț: 321.95 lei
- 20% Preț: 310.25 lei
- 20% Preț: 334.68 lei
- Preț: 373.56 lei
- 20% Preț: 172.68 lei
- 20% Preț: 1386.07 lei
- 20% Preț: 315.76 lei
- 20% Preț: 1003.66 lei
- 20% Preț: 444.17 lei
- 20% Preț: 567.60 lei
- 20% Preț: 632.22 lei
- 17% Preț: 360.18 lei
- 20% Preț: 538.28 lei
- 20% Preț: 335.08 lei
- 20% Preț: 307.68 lei
- 20% Preț: 343.16 lei
- 20% Preț: 641.78 lei
- 20% Preț: 579.56 lei
- 20% Preț: 1053.45 lei
- 15% Preț: 568.74 lei
- Preț: 389.47 lei
- 20% Preț: 333.46 lei
- 20% Preț: 607.38 lei
- 20% Preț: 326.97 lei
Preț: 584.58 lei
Preț vechi: 730.73 lei
-20% Nou
Puncte Express: 877
Preț estimativ în valută:
111.86€ • 118.13$ • 93.09£
111.86€ • 118.13$ • 93.09£
Carte tipărită la comandă
Livrare economică 13-27 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030757670
ISBN-10: 3030757676
Pagini: 434
Ilustrații: XXIII, 434 p. 142 illus., 117 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.64 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030757676
Pagini: 434
Ilustrații: XXIII, 434 p. 142 illus., 117 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.64 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Representation Learning and Embedding.- Episode Adaptive Embedding Networks for Few-shot Learning.- Universal Representation for Code.- Self-supervised Adaptive Aggregator Learning on Graph.- A Fast Algorithm for Simultaneous Sparse Approximation.- STEPs-RL: Speech-Text Entanglement for Phonetically Sound Representation Learning.- RW-GCN: Training Graph Convolution Networks with biased random walk for Semi-Supervised Classification.- Loss-aware Pattern Inference: A Correction on the Wrongly Claimed Limitations of Embedding Models.- SST-GNN: Simplified Spatio-temporal Traffic forecasting model using Graph Neural Network.- VIKING: Adversarial Attack on Network Embeddings via Supervised Network Poisoning.- Self-supervised Graph Representation Learning with Variational Inference.- Manifold Approximation and Projection by Maximizing Graph Information.- Learning Attention-based Translational Knowledge Graph Embedding via Nonlinear Dynamic Mapping.- Multi-Grained Dependency Graph Neural Network for Chinese Open Information Extraction.- Human-Understandable Decision Making for Visual Recognition.- LightCAKE: A Lightweight Framework for Context-Aware Knowledge Graph Embedding.- Transferring Domain Knowledge with an Adviser in Continuous Tasks.- Inferring Hierarchical Mixture Structures: A Bayesian Nonparametric Approach.- Quality Control for Hierarchical Classification with Incomplete Annotations.- Learning from Data.- Learning Discriminative Features using Multi-label Dual Space.- AutoCluster: Meta-learning Based Ensemble Method for Automated Unsupervised Clustering.- BanditRank: Learning to Rank Using Contextual Bandits.- A compressed and accelerated SegNet for plant leaf disease segmentation: A Differential Evolution based approach.- Meta-Context Transformers for Domain-Specific Response Generation.- A Multi-task Kernel Learning Algorithm for Survival Analysis.- Meta-data Augmentation based Search Strategy through Generative Adversarial Network for AutoML Model Selection.- Tree-Capsule: Tree-Structured Capsule Network for Improving Relation Extraction.- Rule Injection-based Generative Adversarial Imitation Learning for Knowledge Graph Reasoning.- Hierarchical Self Attention Based Autoencoder for Open-Set Human Activity Recognition.- Reinforced Natural Language Inference for Distantly Supervised Relation Classification.- SaGCN: Structure-aware Graph Convolution Network for Document-level Relation Extraction.- Addressing the class imbalance problem in medical image segmentation via accelerated Tversky loss function.- Incorporating Relational Knowledge in Explainable Fake News Detection.- Incorporating Syntactic Information into Relation Representations for Enhanced Relation Extraction.