Advances in Machine Learning: First Asian Conference on Machine Learning, ACML 2009, Nanjing, China, November 2-4, 2009. Proceedings: Lecture Notes in Computer Science, cartea 5828
Editat de Zhi-Hua Zhou, Takashi Washioen Limba Engleză Paperback – 6 oct 2009
Din seria Lecture Notes in Computer Science
- 20% Preț: 1040.03 lei
- 20% Preț: 333.46 lei
- 20% Preț: 335.08 lei
- 20% Preț: 444.17 lei
- 20% Preț: 238.01 lei
- 20% Preț: 333.46 lei
- 20% Preț: 438.69 lei
- Preț: 440.52 lei
- 20% Preț: 336.71 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 567.60 lei
- 20% Preț: 571.63 lei
- 15% Preț: 568.74 lei
- 17% Preț: 427.22 lei
- 20% Preț: 641.78 lei
- 20% Preț: 307.71 lei
- 20% Preț: 574.05 lei
- 20% Preț: 579.56 lei
- Preț: 373.56 lei
- 20% Preț: 330.23 lei
- 20% Preț: 649.49 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- 20% Preț: 1386.07 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1003.66 lei
- 20% Preț: 256.27 lei
- 20% Preț: 632.22 lei
- 20% Preț: 575.48 lei
- 20% Preț: 747.79 lei
- 20% Preț: 1053.45 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 346.40 lei
- 20% Preț: 809.19 lei
- Preț: 402.62 lei
- 20% Preț: 584.40 lei
- 20% Preț: 1159.14 lei
- 20% Preț: 747.79 lei
- Preț: 389.48 lei
- 20% Preț: 343.16 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 332.64 lei
Preț vechi: 415.80 lei
-20% Nou
Puncte Express: 499
Preț estimativ în valută:
63.66€ • 66.13$ • 52.88£
63.66€ • 66.13$ • 52.88£
Carte tipărită la comandă
Livrare economică 01-15 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642052231
ISBN-10: 3642052231
Pagini: 428
Ilustrații: XV, 413 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.61 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642052231
Pagini: 428
Ilustrații: XV, 413 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.61 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Keynote and Invited Talks.- Machine Learning and Ecosystem Informatics: Challenges and Opportunities.- Density Ratio Estimation: A New Versatile Tool for Machine Learning.- Transfer Learning beyond Text Classification.- Regular Papers.- Improving Adaptive Bagging Methods for Evolving Data Streams.- A Hierarchical Face Recognition Algorithm.- Estimating Likelihoods for Topic Models.- Conditional Density Estimation with Class Probability Estimators.- Linear Time Model Selection for Mixture of Heterogeneous Components.- Max-margin Multiple-Instance Learning via Semidefinite Programming.- A Reformulation of Support Vector Machines for General Confidence Functions.- Robust Discriminant Analysis Based on Nonparametric Maximum Entropy.- Context-Aware Online Commercial Intention Detection.- Feature Selection via Maximizing Neighborhood Soft Margin.- Accurate Probabilistic Error Bound for Eigenvalues of Kernel Matrix.- Community Detection on Weighted Networks: A Variational Bayesian Method.- Averaged Naive Bayes Trees: A New Extension of AODE.- Automatic Choice of Control Measurements.- Coupled Metric Learning for Face Recognition with Degraded Images.- Cost-Sensitive Boosting: Fitting an Additive Asymmetric Logistic Regression Model.- On Compressibility and Acceleration of Orthogonal NMF for POMDP Compression.- Building a Decision Cluster Forest Model to Classify High Dimensional Data with Multi-classes.- Query Selection via Weighted Entropy in Graph-Based Semi-supervised Classification.- Learning Algorithms for Domain Adaptation.- Mining Multi-label Concept-Drifting Data Streams Using Dynamic Classifier Ensemble.- Learning Continuous-Time Information Diffusion Model for Social Behavioral Data Analysis.- Privacy-Preserving Evaluation of Generalization Error and Its Applicationto Model and Attribute Selection.- Coping with Distribution Change in the Same Domain Using Similarity-Based Instance Weighting.- Monte-Carlo Tree Search in Poker Using Expected Reward Distributions.- Injecting Structured Data to Generative Topic Model in Enterprise Settings.- Weighted Nonnegative Matrix Co-Tri-Factorization for Collaborative Prediction.