Adversarial Machine Learning: Synthesis Lectures on Artificial Intelligence and Machine Learning
Autor Yevgeniy Vorobeychik, Murat Kantarciogluen Limba Engleză Paperback – 8 aug 2018
The field of adversarial machine learning has emerged to study vulnerabilities of machine learning approaches in adversarial settings and to develop techniques to make learning robust to adversarial manipulation. This book provides a technical overview of this field. After reviewing machine learning concepts and approaches, as well as common use cases of these in adversarial settings, we present a general categorization of attacks on machine learning. We then address two major categories of attacks and associated defenses: decision-time attacks, in which an adversary changes the nature of instances seen by a learned model at the time of prediction in order to cause errors, and poisoning or training time attacks, in which the actual training dataset is maliciously modified. In our final chapter devoted to technical content, we discuss recent techniques for attacks on deep learning, as well as approaches for improving robustness of deep neural networks. We conclude with a discussion of several important issues in the area of adversarial learning that in our view warrant further research.
Given the increasing interest in the area of adversarial machine learning, we hope this book provides readers with the tools necessary to successfully engage in research and practice of machine learning in adversarial settings.
Din seria Synthesis Lectures on Artificial Intelligence and Machine Learning
- 20% Preț: 407.57 lei
- 20% Preț: 375.17 lei
- 20% Preț: 219.93 lei
- 20% Preț: 217.51 lei
- 20% Preț: 221.87 lei
- 20% Preț: 218.97 lei
- 20% Preț: 190.91 lei
- 20% Preț: 219.11 lei
- 20% Preț: 221.53 lei
- 20% Preț: 327.24 lei
- 20% Preț: 348.92 lei
- 20% Preț: 380.35 lei
- 20% Preț: 376.30 lei
- 20% Preț: 407.57 lei
- 20% Preț: 226.23 lei
- 20% Preț: 222.67 lei
- 20% Preț: 225.10 lei
- 20% Preț: 349.95 lei
- 20% Preț: 345.82 lei
- 20% Preț: 351.73 lei
- 20% Preț: 220.89 lei
- 20% Preț: 219.93 lei
- 20% Preț: 220.40 lei
- 20% Preț: 223.50 lei
- 20% Preț: 222.35 lei
- 20% Preț: 330.39 lei
- 20% Preț: 381.79 lei
- 20% Preț: 320.53 lei
- 20% Preț: 321.49 lei
- 20% Preț: 219.43 lei
- 20% Preț: 191.10 lei
- 20% Preț: 222.67 lei
- 20% Preț: 346.82 lei
- 20% Preț: 325.86 lei
- 20% Preț: 220.07 lei
- 20% Preț: 375.76 lei
- 20% Preț: 173.86 lei
- 20% Preț: 220.40 lei
- 20% Preț: 265.09 lei
- 20% Preț: 351.48 lei
- 20% Preț: 289.28 lei
- 20% Preț: 222.03 lei
- 20% Preț: 173.68 lei
- 20% Preț: 175.32 lei
- 20% Preț: 221.87 lei
- 20% Preț: 174.17 lei
- 20% Preț: 327.98 lei
Preț: 377.43 lei
Preț vechi: 471.80 lei
-20% Nou
Puncte Express: 566
Preț estimativ în valută:
72.23€ • 75.03$ • 59.100£
72.23€ • 75.03$ • 59.100£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031004520
ISBN-10: 3031004523
Ilustrații: XVII, 152 p.
Dimensiuni: 191 x 235 mm
Greutate: 0.3 kg
Editura: Springer International Publishing
Colecția Springer
Seria Synthesis Lectures on Artificial Intelligence and Machine Learning
Locul publicării:Cham, Switzerland
ISBN-10: 3031004523
Ilustrații: XVII, 152 p.
Dimensiuni: 191 x 235 mm
Greutate: 0.3 kg
Editura: Springer International Publishing
Colecția Springer
Seria Synthesis Lectures on Artificial Intelligence and Machine Learning
Locul publicării:Cham, Switzerland
Cuprins
List of Figures.- Preface.- Acknowledgments.- Introduction.- Machine Learning Preliminaries.- Categories of Attacks on Machine Learning.- Attacks at Decision Time.- Defending Against Decision-Time Attacks.- Data Poisoning Attacks.- Defending Against Data Poisoning.- Attacking and Defending Deep Learning.- The Road Ahead.- Bibliography.- Authors' Biographies.- Index .
Notă biografică
Yevgeniy Vorobeychik is an Associate Professor of Computer Science and Engineering at Washington University in Saint Louis. Previously, he was an Assistant Professor of Computer Science at Vanderbilt University. Between 2008 and 2010, he was a post-doctoral research associate at the University of Pennsylvania Computer and Information Science department. He received Ph.D. (2008) and M.S.E. (2004) degrees in Computer Science and Engineering from the University of Michigan, and a B.S. degree in Computer Engineering from Northwestern University. His work focuses on game theoretic modeling of security and privacy, adversarial machine learning, algorithmic and behavioral game theory and incentive design, optimization, agent-based modeling, complex systems, network science, and epidemic control. Dr. Vorobeychik received an NSF CAREER award in 2017, and was invited to give an IJCAI-16 early career spotlight talk. He was nominated for the 2008 ACM Doctoral Dissertation Award and received honorable mention for the 2008 IFAAMAS Distinguished Dissertation Award.
Murat Kantarcioglu is a Professor of Computer Science and Director of the UTD Data Security and Privacy Lab at The University of Texas at Dallas. Currently, he is also a visiting scholar at Harvard's Data Privacy Lab. He holds a B.S. in Computer Engineering from Middle East Technical University, and M.S. and Ph.D. degrees in Computer Science from Purdue University. Dr. Kantarcioglu's research focuses on creating technologies that can efficiently extract useful information from any data without sacrificing privacy or security. His research has been supported by awards from NSF, AFOSR, ONR, NSA, and NIH. He has published over 175 peer-reviewed papers. His work has been covered by media outlets such as The Boston Globe and ABC News, among others, and has received three best paper awards. He is also the recipient of various awards including NSF CAREER award, a Purdue CERIAS Diamond Award for academic excellence, the AMIA (American Medical Informatics Association) 2014 Homer R. Warner Award, and the IEEE ISI (Intelligence and Security Informatics) 2017 Technical Achievement Award presented jointly by IEEE SMC and IEEE ITS societies for his research in data security and privacy. He is also a Distinguished Scientist of ACM.