Graph Representation Learning: Synthesis Lectures on Artificial Intelligence and Machine Learning
Autor William L. Hamiltonen Limba Engleză Paperback – 16 sep 2020
This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Din seria Synthesis Lectures on Artificial Intelligence and Machine Learning
- 20% Preț: 400.28 lei
- 20% Preț: 368.45 lei
- 20% Preț: 215.95 lei
- 20% Preț: 213.58 lei
- 20% Preț: 217.84 lei
- 20% Preț: 215.02 lei
- 20% Preț: 187.46 lei
- 20% Preț: 215.15 lei
- 20% Preț: 217.54 lei
- 20% Preț: 321.39 lei
- 20% Preț: 342.68 lei
- 20% Preț: 373.57 lei
- 20% Preț: 369.58 lei
- 20% Preț: 400.28 lei
- 20% Preț: 222.16 lei
- 20% Preț: 218.65 lei
- 20% Preț: 221.04 lei
- 20% Preț: 345.82 lei
- 20% Preț: 345.44 lei
- 20% Preț: 216.91 lei
- 20% Preț: 215.95 lei
- 20% Preț: 216.41 lei
- 20% Preț: 219.46 lei
- 20% Preț: 218.34 lei
- 20% Preț: 324.50 lei
- 20% Preț: 374.97 lei
- 20% Preț: 314.81 lei
- 20% Preț: 315.76 lei
- 20% Preț: 215.47 lei
- 20% Preț: 187.64 lei
- 20% Preț: 218.65 lei
- 20% Preț: 340.61 lei
- 20% Preț: 325.86 lei
- 20% Preț: 370.69 lei
- 20% Preț: 216.10 lei
- 20% Preț: 369.05 lei
- 20% Preț: 170.71 lei
- 20% Preț: 216.41 lei
- 20% Preț: 260.38 lei
- 20% Preț: 345.20 lei
- 20% Preț: 289.28 lei
- 20% Preț: 218.02 lei
- 20% Preț: 170.55 lei
- 20% Preț: 172.15 lei
- 20% Preț: 217.84 lei
- 20% Preț: 171.03 lei
- 20% Preț: 322.12 lei
Preț: 343.71 lei
Preț vechi: 429.63 lei
-20% Nou
Puncte Express: 516
Preț estimativ în valută:
65.78€ • 69.40$ • 54.82£
65.78€ • 69.40$ • 54.82£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031004605
ISBN-10: 3031004604
Pagini: 141
Ilustrații: XVII, 141 p.
Dimensiuni: 191 x 235 x 14 mm
Greutate: 0.32 kg
Editura: Springer International Publishing
Colecția Springer
Seria Synthesis Lectures on Artificial Intelligence and Machine Learning
Locul publicării:Cham, Switzerland
ISBN-10: 3031004604
Pagini: 141
Ilustrații: XVII, 141 p.
Dimensiuni: 191 x 235 x 14 mm
Greutate: 0.32 kg
Editura: Springer International Publishing
Colecția Springer
Seria Synthesis Lectures on Artificial Intelligence and Machine Learning
Locul publicării:Cham, Switzerland
Cuprins
Preface.- Acknowledgments.- Introduction.- Background and Traditional Approaches.- Neighborhood Reconstruction Methods.- Multi-Relational Data and Knowledge Graphs.- The Graph Neural Network Model.- Graph Neural Networks in Practice.- Theoretical Motivations.- Traditional Graph Generation Approaches.- Deep Generative Models.- Conclusion.- Bibliography.- Author's Biography .
Notă biografică
William L. Hamilton is an Assistant Professor of Computer Science at McGill University and a Canada CIFAR Chair in AI. His research focuses on graph representation learning as well as applications in computational social science and biology. In recent years, he has published more than 20 papers on graph representation learning at top-tier venues across machine learning and network science, as well as co-organized several large workshops and tutorials on the topic. Williams work has been recognized by several awards, including the 2018 Arthur L. Samuel Thesis Award for the best doctoral thesis in the Computer Science department at Stanford University and the 2017 Cozzarelli Best Paper Award from the Proceedings of the National Academy of Sciences.