Metric Learning: Synthesis Lectures on Artificial Intelligence and Machine Learning
Autor Aurélien Bellet, Amaury Habrard, Marc Sebbanen Limba Engleză Paperback – 12 feb 2015
Din seria Synthesis Lectures on Artificial Intelligence and Machine Learning
- 20% Preț: 394.08 lei
- 20% Preț: 362.74 lei
- 20% Preț: 212.57 lei
- 20% Preț: 210.23 lei
- 20% Preț: 214.43 lei
- 20% Preț: 211.65 lei
- 20% Preț: 184.53 lei
- 20% Preț: 211.64 lei
- 20% Preț: 214.12 lei
- 20% Preț: 316.42 lei
- 20% Preț: 337.40 lei
- 20% Preț: 367.77 lei
- 20% Preț: 394.08 lei
- 20% Preț: 218.52 lei
- 20% Preț: 215.23 lei
- 20% Preț: 217.57 lei
- 20% Preț: 338.38 lei
- 20% Preț: 345.82 lei
- 20% Preț: 339.87 lei
- 20% Preț: 213.51 lei
- 20% Preț: 212.57 lei
- 20% Preț: 213.02 lei
- 20% Preț: 216.03 lei
- 20% Preț: 214.91 lei
- 20% Preț: 319.48 lei
- 20% Preț: 368.90 lei
- 20% Preț: 309.94 lei
- 20% Preț: 310.87 lei
- 20% Preț: 211.95 lei
- 20% Preț: 184.70 lei
- 20% Preț: 215.07 lei
- 20% Preț: 335.13 lei
- 20% Preț: 325.86 lei
- 20% Preț: 364.96 lei
- 20% Preț: 212.71 lei
- 20% Preț: 363.32 lei
- 20% Preț: 168.04 lei
- 20% Preț: 213.02 lei
- 20% Preț: 256.36 lei
- 20% Preț: 339.86 lei
- 20% Preț: 289.28 lei
- 20% Preț: 214.61 lei
- 20% Preț: 167.87 lei
- 20% Preț: 169.45 lei
- 20% Preț: 214.43 lei
- 20% Preț: 168.36 lei
- 20% Preț: 317.15 lei
Preț: 363.85 lei
Preț vechi: 454.81 lei
-20% Nou
Puncte Express: 546
Preț estimativ în valută:
69.65€ • 74.88$ • 58.06£
69.65€ • 74.88$ • 58.06£
Carte tipărită la comandă
Livrare economică 19 decembrie 24 - 02 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031004445
ISBN-10: 3031004442
Ilustrații: XI, 139 p.
Dimensiuni: 191 x 235 mm
Greutate: 0.27 kg
Editura: Springer International Publishing
Colecția Springer
Seria Synthesis Lectures on Artificial Intelligence and Machine Learning
Locul publicării:Cham, Switzerland
ISBN-10: 3031004442
Ilustrații: XI, 139 p.
Dimensiuni: 191 x 235 mm
Greutate: 0.27 kg
Editura: Springer International Publishing
Colecția Springer
Seria Synthesis Lectures on Artificial Intelligence and Machine Learning
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Metrics.- Properties of Metric Learning Algorithms.- Linear Metric Learning.- Nonlinear and Local Metric Learning.- Metric Learning for Special Settings.- Metric Learning for Structured Data.- Generalization Guarantees for Metric Learning.- Applications.- Conclusion.- Bibliography.- Authors' Biographies .
Notă biografică
Aurélien Bellet received his Ph.D. in Machine Learning from the University of Saint-Etienne (France) in 2012. His work focused on algorithmic and theoretical aspects of metric and similarity learning. After completing his thesis, he was a postdoctoral researcher at the University of Southern California, where he worked on large-scale and distributed machine learning with applications to automatic speech recognition. He is currently a postdoctoral researcher at Telecom ParisTech (France), working on machine learning for big data.Amaury Habrard received a Ph.D. in Machine Learning in 2004 from the University of Saint-Etienne. He was Assistant Professor at the Laboratoire dInformatique Fondamentale of Aix-Marseille University until 2011, where he received a habilitation thesis in 2010. He is currently Professor in the Machine Learning group at the Hubert Curien laboratory of the University of Saint-Etienne. His research interests include metric learning, transfer learning, online learningand learning theory.Marc Sebban received a Ph.D. in Machine Learning in 1996 from the Universite of Lyon 1. After four years spent at the French West Indies and Guyana University as Assistant Professor, he got a position of Professor in 2002 at the University of Saint-Etienne (France). Since 2010, he is the head of the Machine Learning group and the director of the Computer Science, Cryptography and Imaging department of the Hubert Curien laboratory. His research interests focus on ensemble methods, metric learning, transfer learning and more generally on statistical learning theory.