Cantitate/Preț
Produs

Algorithmic Learning Theory: 20th International Conference, ALT 2009, Porto, Portugal, October 3-5, 2009, Proceedings: Lecture Notes in Computer Science, cartea 5809

Editat de Ricard Gavaldà, Gabor Lugosi, Thomas Zeugmann, Sandra Zilles
en Limba Engleză Paperback – 21 sep 2009
This book constitutes the refereed proceedings of the 20th International Conference on Algorithmic Learning Theory, ALT 2009, held in Porto, Portugal, in October 2009, co-located with the 12th International Conference on Discovery Science, DS 2009. The 26 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 60 submissions. The papers are divided into topical sections of papers on online learning, learning graphs, active learning and query learning, statistical learning, inductive inference, and semisupervised and unsupervised learning. The volume also contains abstracts of the invited talks: Sanjoy Dasgupta, The Two Faces of Active Learning; Hector Geffner, Inference and Learning in Planning; Jiawei Han, Mining Heterogeneous; Information Networks By Exploring the Power of Links, Yishay Mansour, Learning and Domain Adaptation; Fernando C.N. Pereira, Learning on the Web.
Citește tot Restrânge

Din seria Lecture Notes in Computer Science

Preț: 34032 lei

Preț vechi: 42540 lei
-20% Nou

Puncte Express: 510

Preț estimativ în valută:
6513 6719$ 5512£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642044137
ISBN-10: 3642044131
Pagini: 299
Ilustrații: XI, 399 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.64 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Invited Papers.- The Two Faces of Active Learning.- Inference and Learning in Planning.- Mining Heterogeneous Information Networks by Exploring the Power of Links.- Learning and Domain Adaptation.- Learning on the Web.- Regular Contributions.- Prediction with Expert Evaluators’ Advice.- Pure Exploration in Multi-armed Bandits Problems.- The Follow Perturbed Leader Algorithm Protected from Unbounded One-Step Losses.- Computable Bayesian Compression for Uniformly Discretizable Statistical Models.- Calibration and Internal No-Regret with Random Signals.- St. Petersburg Portfolio Games.- Reconstructing Weighted Graphs with Minimal Query Complexity.- Learning Unknown Graphs.- Completing Networks Using Observed Data.- Average-Case Active Learning with Costs.- Canonical Horn Representations and Query Learning.- Learning Finite Automata Using Label Queries.- Characterizing Statistical Query Learning: Simplified Notions and Proofs.- An Algebraic Perspective on Boolean Function Learning.- Adaptive Estimation of the Optimal ROC Curve and a Bipartite Ranking Algorithm.- Complexity versus Agreement for Many Views.- Error-Correcting Tournaments.- Difficulties in Forcing Fairness of Polynomial Time Inductive Inference.- Learning Mildly Context-Sensitive Languages with Multidimensional Substitutability from Positive Data.- Uncountable Automatic Classes and Learning.- Iterative Learning from Texts and Counterexamples Using Additional Information.- Incremental Learning with Ordinal Bounded Example Memory.- Learning from Streams.- Smart PAC-Learners.- Approximation Algorithms for Tensor Clustering.- Agnostic Clustering.

Textul de pe ultima copertă

This book constitutes the refereed proceedings of the 20th International Conference on Algorithmic Learning Theory, ALT 2009, held in Porto, Portugal, in October 2009, co-located with the 12th International Conference on Discovery Science, DS 2009.
The 26 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 60 submissions. The papers are divided into topical sections of papers on online learning, learning graphs, active learning and query learning, statistical learning, inductive inference, and semisupervised and unsupervised learning. The volume also contains abstracts of the
invited talks: Sanjoy Dasgupta, The Two Faces of Active Learning; Hector Geffner, Inference and
Learning in Planning; Jiawei Han, Mining Heterogeneous; Information Networks By Exploring the Power of Links, Yishay Mansour, Learning and Domain Adaptation; Fernando C.N. Pereira, Learning on the Web.