Cantitate/Preț
Produs

An Algebraic Approach to Geometry: Geometric Trilogy II

Autor Francis Borceux
en Limba Engleză Hardback – 20 noi 2013
This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in geometric applications, such as cryptography.
380 years ago, the work of Fermat and Descartes led us to study geometric problems using coordinates and equations. Today, this is the most popular way of handling geometrical problems. Linear algebra provides an efficient tool for studying all the first degree (lines, planes) and second degree (ellipses, hyperboloids) geometric figures, in the affine, the Euclidean, the Hermitian and the projective contexts. But recent applications of mathematics, like cryptography, need these notions not only in real or complex cases, but also in more general settings, like in spaces constructed on finite fields. And of course, why not also turn our attention to geometric figures of higher degrees? Besides all the linear aspects of geometry in their most general setting, this book also describes useful algebraic tools for studying curves of arbitrary degree and investigates results as advanced as the Bezout theorem, the Cramer paradox, topological group of a cubic, rational curves etc.
Hence the book is of interest for all those who have to teach or study linear geometry: affine, Euclidean, Hermitian, projective; it is also of great interest to those who do not want to restrict themselves to the undergraduate level of geometric figures of degree one or two.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 69603 lei  38-44 zile
  Springer International Publishing – 23 aug 2016 69603 lei  38-44 zile
Hardback (1) 113171 lei  6-8 săpt.
  Springer International Publishing – 20 noi 2013 113171 lei  6-8 săpt.

Preț: 113171 lei

Preț vechi: 138013 lei
-18% Nou

Puncte Express: 1698

Preț estimativ în valută:
21665 22281$ 17974£

Carte tipărită la comandă

Livrare economică 18 februarie-04 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319017327
ISBN-10: 3319017322
Pagini: 460
Ilustrații: XVII, 430 p. 117 illus.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 7.92 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Public țintă

Graduate

Cuprins

​Introduction.- Preface.- 1.The Birth of Analytic Geometry.- 2.Affine Geometry.- 3.More on Real Affine Spaces.- 4.Euclidean Geometry.- 5.Hermitian Spaces.- 6.Projective Geometry.- 7.Algebraic Curves.- Appendices: A. Polynomials Over a Field.- B. Polynomials in Several Variables.- C. Homogeneous Polynomials.- D. Resultants.- E. Symmetric Polynomials.- F. Complex Numbers.- G. Quadratic Forms.- H. Dual Spaces.- Index.- Bibliography.​

Recenzii

From the book reviews:
“The book under review is the second of a trilogy of books discussing the broad sweep of geometry and the various ways of approaching this subject. … This book … would give the students not only a new look at geometry but also a renewed appreciation for the power of linear algebra in other branches of mathematics. … it is certainly something that any instructor interested in geometry or algebra would want to have.” (Mark Hunacek, MAA Reviews, January, 2014)
“This beautiful, comprehensive, well-written and clearly structured book addresses all those who have to teach or learn geometry at an undergraduate level. More than 110 very aesthetical figures accompany the text and appeal to the geometric intuition of the reader; 41 references are recommended for further reading. The text is divided into 7 chapters, each begins with an overview and ends with problems and exercises.” (Rolf Riesinger, zbMATH, Vol. 1298, 2014)

Notă biografică

Francis Borceux is Professor of mathematics at the University of Louvain since many years. He has developed research in algebra and essentially taught geometry, number theory and algebra courses and he has been dean of the Faculty of Sciences of his University and chairman of the Mathematical Committee of the Belgian National Scientific Research Foundation.

Textul de pe ultima copertă

This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in geometric applications, such as cryptography.  
 380 years ago, the work of Fermat and Descartes led us to study geometric problems using coordinates and equations. Today, this is the most popular way of handling geometrical problems. Linear algebra provides an efficient tool for studying all the first degree (lines, planes, …) and second degree (ellipses, hyperboloids, …) geometric figures, in the affine, the Euclidean, the Hermitian and the projective contexts. But recent applications of mathematics, like cryptography, need these notions not only in real or complex cases, but also in more general settings, like in spaces constructed on finite fields. And of course, why not also turn our attention to geometric figures of higher degrees? Besides all the linear aspects of geometry in their most general setting, this book also describes useful algebraic tools for studying curves of arbitrary degree and investigates results as advanced as the Bezout theorem, the Cramer paradox, topological group of a cubic, rational curves etc.  
 Hence the book is of interest for all those who have to teach or study linear geometry: affine, Euclidean, Hermitian, projective; it is also of great interest to those who do not want to restrict themselves to the undergraduate level of geometric figures of degree one or two.

Caracteristici

Unified treatment of the various algebraic approaches of geometric spaces
Provides a full treatment, perfectly accessible at a bachelor level, of all algebraic ingredients necessary to develop all the major aspects of the theory of algebraic curves
Pays attention to the geometric figures of higher degree
Includes supplementary material: sn.pub/extras