Cantitate/Preț
Produs

A First Course in Noncommutative Rings: Graduate Texts in Mathematics, cartea 131

Autor Tsit-Yuen Lam
en Limba Engleză Hardback – 21 iun 2001
A First Course in Noncommutative Rings, an outgrowth of the author's lectures at the University of California at Berkeley, is intended as a textbook for a one-semester course in basic ring theory. The material covered includes the Wedderburn-Artin theory of semisimple rings, Jacobson's theory of the radical, representation theory of groups and algebras, prime and semiprime rings, local and semilocal rings, perfect and semiperfect rings, etc. By aiming the level of writing at the novice rather than the connoisseur and by stressing th the role of examples and motivation, the author has produced a text that is suitable not only for use in a graduate course, but also for self- study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 45313 lei  6-8 săpt.
  Springer – 21 iun 2001 45313 lei  6-8 săpt.
Hardback (1) 57893 lei  6-8 săpt.
  Springer – 21 iun 2001 57893 lei  6-8 săpt.

Din seria Graduate Texts in Mathematics

Preț: 57893 lei

Preț vechi: 68109 lei
-15% Nou

Puncte Express: 868

Preț estimativ în valută:
11079 11542$ 9212£

Carte tipărită la comandă

Livrare economică 10-24 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387951836
ISBN-10: 0387951830
Pagini: 388
Ilustrații: XIX, 388 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.71 kg
Ediția:2nd ed. 2001
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

1 Wedderburn—Artin Theory.- 2 Jacobson Radical Theory.- 3 Introduction to Representation Theory.- 4 Prime and Primitive Rings.- 5 Introduction to Division Rings.- 6 Ordered Structures in Rings.- 7 Local Rings, Semilocal Rings, and Idempotents.- 8 Perfect and Semiperfect Rings.- References.- Name Index.

Recenzii

From the reviews of the second edition:
"Ten years ago, the first edition ... of this book appeared. It is quite rare that a book can become a classic in such a short time, but this did happen for this excellent book. Of course minor changes were made for the second edition; new exercises and an appendix on uniserial modules were added. Every part of the text was written with love and care. The explanations are very well done, useful examples help to understand the material ... ." (G. Pilz, Internationale Mathematische Nachrichten, Issue 196, 2004)
"This is the second edition of the book with the same title published in 1991. The entire text has been retyped, some proofs were rewritten, and numerous improvements in the exposition have been included. ... The original exercises in the first edition have been replaced by 400 exercises of the Problem Book published by the author in 1995 ... . As the publication ... impressively shows, the book is indeed very suitable as a text for a full-year graduate course in non-commutative ring theory." (H. Mitsch, Monatshefte für Mathematik, Vol. 136 (4), 2002)
"The book under review is the new edition of the 1st edition of this book which was published ten years ago. In the intervening period, the book has become a standard textbook for a graduate course in non commutative rings. ... All this material is beautifully covered in this book with many examples and exercises. The book is a joy to read, and must be read by all students of mathematics. It is specially welcome to have this book in softcover, relatively in-expensive, edition ... ." (Dipendra Prasad, Journal of the Indian Academy of Mathematics, Vol. 24 (1), 2002)
"This book, an outgrowth of the author’s lectures at the University of Berkeley, is intended as a textbook for a one-semester course in basic ring theory. ... More than 400 exercises testing the understanding of the general theory in the text are included inthis new edition." (L’Enseignement Mathematique, Vol. 47 (3-4), 2001)
"The present book is a radical update. For the second edition the text was retyped, some proofs were rewritten and improvements in exposition have also taken place. ... It is well-written and consists of eight chapters. ... There is a very good reference section for further study and a name index consisting of four pages of closely-packed names. ... As always the standard of print and presentation by Springer is exemplary." (Brian Denton, The Mathematical Gazette, Vol. 86 (505), 2002)