Cantitate/Preț
Produs

An Invitation to Quantum Cohomology: Kontsevich's Formula for Rational Plane Curves: Progress in Mathematics, cartea 249

Autor Joachim Kock, Israel Vainsencher
en Limba Engleză Hardback – 24 oct 2006
This book is an elementary introduction to some ideas and techniques that have revolutionized enumerative geometry: stable maps and quantum cohomology. A striking demonstration of the potential of these techniques is provided by Kont- vich's famous formula, which solves a long-standing question: How many plane rational curves of degree d pass through 3d — 1 given points in general position? The formula expresses the number of curves for a given degree in terms of the numbers for lower degrees. A single initial datum is required for the recursion, namely, the case d = I, which simply amounts to the fact that through two points there is but one line. Assuming the existence of the Kontsevich spaces of stable maps and a few of their basic properties, we present a complete proof of the formula, and use the formula as a red thread in our Invitation to Quantum Cohomology. For more information about the mathematical content, see the Introduction. The canonical reference for this topic is the already classical Notes on Stable Maps and Quantum Cohomology by Fulton and Pandharipande [29], cited henceforth as FP-NOTES. We have traded greater generality for the sake of introducing some simplifications. We have also chosen not to include the technical details of the construction of the moduli space, favoring the exposition with many examples and heuristic discussions.
Citește tot Restrânge

Din seria Progress in Mathematics

Preț: 51684 lei

Preț vechi: 60804 lei
-15% Nou

Puncte Express: 775

Preț estimativ în valută:
9896 10305$ 8211£

Carte tipărită la comandă

Livrare economică 14-28 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780817644567
ISBN-10: 0817644563
Pagini: 159
Ilustrații: XIV, 162 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.37 kg
Ediția:2007
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

Prologue: Warming Up with Cross Ratios, and the Definition of Moduli Space.- Stable n-pointed Curves.- Stable Maps.- Enumerative Geometry via Stable Maps.- Gromov—Witten Invariants.- Quantum Cohomology.

Recenzii

"The book seems to be ideally designed for a semester course or ambitious self-study."  —Mathematical Reviews
"The book is intended to be a friendly introduction to quantum cohomology. It makes the reader acquainted with the notions of stable curves and stable maps, and their moduli spaces. These notions are central in the field. ... Each chapter ends with references for further readings, and also with a set of exercices which help fixing the ideas introduced in that chapter. This makes the book especially useful for graduate courses, and for graduate students who wish to learn about quantum cohomology." —Zentralblatt Math
"…The book is ideal for self-study, as a text for a mini-course in quantum cohomology, or a special topics text in a standard course in intersection theory. The book will prove equally useful to graduate students in the classroom setting as to researchers in geometry and physics who wish to learn about the subject"   —Analele Stiintifice ale Universitatii “Al. I. Cuza” din Iasi

Textul de pe ultima copertă

This book is an elementary introduction to stable maps and quantum cohomology, starting with an introduction to stable pointed curves, and culminating with a proof of the associativity of the quantum product. The viewpoint is mostly that of enumerative geometry, and the red thread of the exposition is the problem of counting rational plane curves. Kontsevich's formula is initially established in the framework of classical enumerative geometry, then as a statement about reconstruction for Gromov–Witten invariants, and finally, using generating functions, as a special case of the associativity of the quantum product.
Emphasis is given throughout the exposition to examples, heuristic discussions, and simple applications of the basic tools to best convey the intuition behind the subject. The book demystifies these new quantum techniques by showing how they fit into classical algebraic geometry.
Some familiarity with basic algebraic geometry and elementary intersection theory is assumed. Each chapter concludes with some historical comments and an outline of key topics and themes as a guide for further study, followed by a collection of exercises that complement the material covered and reinforce computational skills. As such, the book is ideal for self-study, as a text for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory. The book will prove equally useful to graduate students in the classroom setting as to researchers in geometry and physics who wish to learn about the subject.

Caracteristici

Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves Viewpoint is mostly that of enumerative geometry Emphasis is on examples, heuristic discussions, and simple applications to best convey the intuition behind the subject Ideal for self-study, for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory