Analysis I
Autor Matthias Hieberde Limba Germană Paperback – 5 dec 2018
Zentrale Grundkonzepte werden bereits frühzeitig eingeführt und diskutiert – jedoch zunächst nicht in einem allgemeinen, sondern in einem angemessenen und überschaubaren Rahmen. Diese Konzepte werden anschließend mit steigender Komplexität vertiefend behandelt und aus verschiedenen Blickwinkeln beleuchtet.
Eine Vielzahl von Beispielen und Aufgaben zeigt die Vernetzung und Verzahnung der Analysis mit anderen Teilgebieten der Mathematik und gibt den Studierenden weitreichende Möglichkeiten, ihr Wissen und Verständnis dieser Thematik zu vertiefen bzw. zu verbreitern. Kapitelweise ausgelagerte Anmerkungen und Ergänzungen dienen als Zusatz- und Hintergrundinformation zum behandelten Stoff und runden diesen ab, ohne den Blick auf das Wesentliche zu verstellen.
Preț: 277.89 lei
Nou
Puncte Express: 417
Preț estimativ în valută:
53.19€ • 55.43$ • 44.28£
53.19€ • 55.43$ • 44.28£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662575376
ISBN-10: 366257537X
Pagini: 304
Ilustrații: X, 292 S. 41 Abb., 6 Abb. in Farbe.
Dimensiuni: 168 x 240 x 20 mm
Greutate: 0.49 kg
Ediția:1. Aufl. 2018
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 366257537X
Pagini: 304
Ilustrații: X, 292 S. 41 Abb., 6 Abb. in Farbe.
Dimensiuni: 168 x 240 x 20 mm
Greutate: 0.49 kg
Ediția:1. Aufl. 2018
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
Grundlagen: Mathematische Sprache, Zahlen, Mengen, Abbildungen.- Konvergenz von Folgen und Reihen.- Stetige Funktionen und topologische Grundlagen.- Differentialrechnung einer Variablen.- Integralrechnung einer Variablen.
Notă biografică
Prof. Dr. Matthias Hieber lehrt und forscht am Fachbereich Mathematik der TU Darmstadt und leitet dort die Arbeitsgruppe Angewandte Analysis.
Textul de pe ultima copertă
Dieses Lehrbuch zeichnet sich durch einen klaren und modernen Aufbau aus und ist auf eine breit angelegte Grundausbildung ausgerichtet. Es ist der erste Band einer zweiteiligen Einführung in die Analysis, die Studierende der Mathematik und verwandter Studienrichtungen (etwa Physik, Informatik und Ingenieurwissenschaften) sowie deren Dozenten anspricht.
Zentrale Grundkonzepte werden bereits frühzeitig eingeführt und diskutiert – jedoch zunächst nicht in einem allgemeinen, sondern in einem angemessenen und überschaubaren Rahmen. Diese Konzepte werden anschließend mit steigender Komplexität vertiefend behandelt und aus verschiedenen Blickwinkeln beleuchtet.
Eine Vielzahl von Beispielen und Aufgaben zeigt die Vernetzung und Verzahnung der Analysis mit anderen Teilgebieten der Mathematik und gibt den Studierenden weitreichende Möglichkeiten, ihr Wissen und Verständnis dieser Thematik zu vertiefen bzw. zu verbreitern. Kapitelweise ausgelagerte Anmerkungen und Ergänzungen dienen als Zusatz- und Hintergrundinformation zum behandelten Stoff und runden diesen ab, ohne den Blick auf das Wesentliche zu verstellen.Der Inhalt
Grundlagen – Reelle, rationale, ganze, natürliche und komplexe Zahlen – Konvergenz von Folgen und Reihen – Potenzreihen – Stetigkeit – Topologische Grundlagen – Exponentialfunktion und Verwandte – Differentiation – Integration – Summen, Integrale und Anwendungen
Der Autor
Prof. Dr. Matthias Hieber lehrt und forscht am Fachbereich Mathematik der TU Darmstadt und leitet dort die Arbeitsgruppe Angewandte Analysis.
Zentrale Grundkonzepte werden bereits frühzeitig eingeführt und diskutiert – jedoch zunächst nicht in einem allgemeinen, sondern in einem angemessenen und überschaubaren Rahmen. Diese Konzepte werden anschließend mit steigender Komplexität vertiefend behandelt und aus verschiedenen Blickwinkeln beleuchtet.
Eine Vielzahl von Beispielen und Aufgaben zeigt die Vernetzung und Verzahnung der Analysis mit anderen Teilgebieten der Mathematik und gibt den Studierenden weitreichende Möglichkeiten, ihr Wissen und Verständnis dieser Thematik zu vertiefen bzw. zu verbreitern. Kapitelweise ausgelagerte Anmerkungen und Ergänzungen dienen als Zusatz- und Hintergrundinformation zum behandelten Stoff und runden diesen ab, ohne den Blick auf das Wesentliche zu verstellen.Der Inhalt
Grundlagen – Reelle, rationale, ganze, natürliche und komplexe Zahlen – Konvergenz von Folgen und Reihen – Potenzreihen – Stetigkeit – Topologische Grundlagen – Exponentialfunktion und Verwandte – Differentiation – Integration – Summen, Integrale und Anwendungen
Der Autor
Prof. Dr. Matthias Hieber lehrt und forscht am Fachbereich Mathematik der TU Darmstadt und leitet dort die Arbeitsgruppe Angewandte Analysis.
Caracteristici
Ermöglicht das Verstehen und Vertiefen zentraler Konzepte Enthält eine Vielzahl von Beispielen und Aufgaben Zeigt die Vernetzung und Verzahnung der Analysis mit anderen Teilgebieten der Mathematik Enthält ausgelagerte Anmerkungen und Ergänzungen als Zusatz- und Hintergrundinformation zum behandelten Stoff