Cantitate/Preț
Produs

Gewöhnliche Differentialgleichungen: Springer-Lehrbuch

Autor Vladimir I. Arnold Traducere de T. Damm
de Limba Germană Paperback – 13 mar 2001
nen (die fast unverändert in moderne Lehrbücher der Analysis übernommen wurde) ermöglichten ihm nach seinen eigenen Worten, "in einer halben Vier­ telstunde" die Flächen beliebiger Figuren zu vergleichen. Newton zeigte, daß die Koeffizienten seiner Reihen proportional zu den sukzessiven Ableitungen der Funktion sind, doch ging er darauf nicht weiter ein, da er zu Recht meinte, daß die Rechnungen in der Analysis bequemer auszuführen sind, wenn man nicht mit höheren Ableitungen arbeitet, sondern die ersten Glieder der Reihenentwicklung ausrechnet. Für Newton diente der Zusammenhang zwischen den Koeffizienten der Reihe und den Ableitungen eher dazu, die Ableitungen zu berechnen als die Reihe aufzustellen. Eine von Newtons wichtigsten Leistungen war seine Theorie des Sonnensy­ stems, die in den "Mathematischen Prinzipien der Naturlehre" ("Principia") ohne Verwendung der mathematischen Analysis dargestellt ist. Allgemein wird angenommen, daß Newton das allgemeine Gravitationsgesetz mit Hilfe seiner Analysis entdeckt habe. Tatsächlich hat Newton (1680) lediglich be­ wiesen, daß die Bahnkurven in einem Anziehungsfeld Ellipsen sind, wenn die Anziehungskraft invers proportional zum Abstandsquadrat ist: Auf das Ge­ setz selbst wurde Newton von Hooke (1635-1703) hingewiesen (vgl. § 8) und es scheint, daß es noch von weiteren Forschern vermutet wurde.
Citește tot Restrânge

Din seria Springer-Lehrbuch

Preț: 28127 lei

Nou

Puncte Express: 422

Preț estimativ în valută:
5385 5597$ 4464£

Carte tipărită la comandă

Livrare economică 06-20 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540668909
ISBN-10: 354066890X
Pagini: 360
Ilustrații: XII, 344 S. 1 Abb.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:2. Aufl. 2001. Softcover reprint of the original 2nd ed. 2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer-Lehrbuch

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Upper undergraduate

Cuprins

1. Grundbegriffe.- § 1. Phasenräume.- § 2. Vektorfelder auf der Geraden.- § 3. Lineare Gleichungen.- § 4. Phasenflüsse.- § 5. Die Operation von Diffeomorphismen auf Vektorfeldern und Richtungsfeldern.- § 6. Symmetrien.- 2. Grundlegende Sätze.- § 7. Rektifizierungssätze.- § 8. Anwendungen auf Gleichungen höherer Ordnung.- § 9. Phasenkurven eines autonomen Systems.- § 10. Die Ableitung in Richtung eines Vektorfeldes und erste Integrale.- § 11. Lineare und quasilineare partielle Differentialgleichungen erster Ordnung.- § 12. Das konservative System mit einem Freiheitsgrad.- 3. Lineare Systeme.- § 13. Lineare Probleme.- § 14. Die Exponentialfunktion.- § 15. Eigenschaften der Exponentialfunktion.- § 16. Die Determinante des Operators eA.- § 17. Praktische Berechnung der Matrixexponentialfunktion: Der Fall reeller paarweise verschiedener Eigenwerte.- § 18. Komplexifizierung und Reellifizierung.- § 19. Die lineare Gleichung mit komplexen Koeffizienten.- § 20. Die Komplexifizierung einer reellen Gleichung.- § 21. Klassifikation der singulären Punkte eines linearen Systems.- § 22. Die topologische Klassifizierung singulärer Punkte.- § 23. Stabilität von Gleichgewichtslagen.- § 24. Der Fall rein imaginärer Eigenwerte.- § 25. Der Fall mehrfacher Eigenwerte.- § 26. Quasipolynome.- § 27. Lineare nichtautonome Gleichungen.- § 28. Lineare Gleichungen mit periodischen Koeffizienten.- § 29. Variation der Konstanten.- 4. Beweise der grundlegenden Sätze.- § 30. Kontrahierende Abbildungen.- § 31. Beweis des Existenzsatzes und des Satzes über die stetige Abhängigkeit von den Anfangsbedingungen.- § 32. Der Differenzierbarkeitsatz.- 5. Differentialgleichungen auf Mannigfaltigkeiten.- § 33. Differenzierbare Mannigfaltigkeiten.- § 34.Tangentialbündel. Vektorfelder auf Mannigfaltigkeiten.- § 35. Der durch ein Vektorfeld definierte Phasenfluß.- § 36. Der Index singulärer Punkte eines Vektorfeldes.- Prüfungsprogramm.- Beispiele für Prüfungsaufgaben.

Textul de pe ultima copertă

Zum Thema gewöhnliche Differentialgleichungen liegt mit die- sem Buch nun eines der herausragendsten Werke dazu wieder in deutscher Sprache vor. Es zeichnet sich durch die das Ver- ständnis der Zusammenhänge fördernde geometrische Betrach- tungsweise, exzellente Didaktik und geschickt gewählte Übungsaufgaben aus. Mathematik- und Physikstudenten im Grundstudium wird dieses Buch gleichermaßen nützlich sein.

Caracteristici

Eines der besten Mathematikbücher von einem Top-Autor Mathematisch, didaktisch und sprachlich erstklassig Einzigartiger Zugang zum Verständnis von Gewöhnlichen Differentialgleichungen Geometrischer Ansatz, besonders geeignet für Physiker Includes supplementary material: sn.pub/extras