Weakly Connected Neural Networks: Applied Mathematical Sciences, cartea 126
Autor Frank C. Hoppensteadt, Eugene M. Izhikevichen Limba Engleză Hardback – 10 iul 1997
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 628.11 lei 43-57 zile | |
Springer – 30 sep 2012 | 628.11 lei 43-57 zile | |
Hardback (1) | 874.94 lei 43-57 zile | |
Springer – 10 iul 1997 | 874.94 lei 43-57 zile |
Din seria Applied Mathematical Sciences
- 23% Preț: 1367.93 lei
- 18% Preț: 405.27 lei
- 13% Preț: 429.49 lei
- 13% Preț: 430.67 lei
- 24% Preț: 906.76 lei
- 23% Preț: 659.04 lei
- 19% Preț: 743.15 lei
- 18% Preț: 883.37 lei
- 18% Preț: 772.22 lei
- 18% Preț: 923.24 lei
- 15% Preț: 626.99 lei
- Preț: 382.64 lei
- 24% Preț: 808.03 lei
- Preț: 439.74 lei
- Preț: 184.74 lei
- Preț: 387.77 lei
- 18% Preț: 939.15 lei
- 15% Preț: 625.05 lei
- 15% Preț: 513.69 lei
- Preț: 401.40 lei
- Preț: 379.14 lei
- 18% Preț: 714.91 lei
- 15% Preț: 690.83 lei
- Preț: 384.22 lei
- 18% Preț: 988.05 lei
- Preț: 391.67 lei
- 18% Preț: 1097.68 lei
- 18% Preț: 1102.28 lei
- 18% Preț: 1348.92 lei
- 18% Preț: 1097.22 lei
- 18% Preț: 1107.95 lei
- 15% Preț: 634.43 lei
Preț: 874.94 lei
Preț vechi: 1067.01 lei
-18% Nou
Puncte Express: 1312
Preț estimativ în valută:
167.46€ • 174.54$ • 139.40£
167.46€ • 174.54$ • 139.40£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387949482
ISBN-10: 0387949488
Pagini: 402
Ilustrații: XVI, 402 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.73 kg
Ediția:1997
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387949488
Pagini: 402
Ilustrații: XVI, 402 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.73 kg
Ediția:1997
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Introduction.- 2 Bifurcations in Neuron Dynamics.- 3 Neural Networks.- 4 Introduction to Canonical Models.- 5 Local Analysis of WCNNs.- 6 Local Analysis of Singularly Perturbed WCNNs.- 7 Local Analysis of Weakly Connected Maps.- 8 Saddle-Node on a Limit Cycle.- 9 Weakly Connected Oscillators.- 10 Multiple Andronov-Hopf Bifurcation.- 11 Multiple Cusp Bifurcation.- 12 Quasi-Static Bifurcations.- 13 Synaptic Organizations of the Brain.- References.
Recenzii
From the reviews:
"...After the introduction, written according to the authors in ordinary language, and well readable even for laymen, follows a nicely written Chapter 2 on bifurcations in neuron dynamics which must be read. Here also spiking and bursting phenomena are clearly described. Chapter 3 contains a short sketch of nonhyperbolic (when the Jacobian matrix of (1) has at least one eigenvalue with zero real part) neural networks. The remaining part of the book is mainly devoted to canonical models (Chapter 4), their derivation (Chapters 6--9), and their analysis (Chapters 10--12). The term canonical model is not precisely defined here. The authors say that a model is canonical if there is a continuous change of variables that transforms any other model from a given class into this one. As the method of deriving the canonical models, the authors exploit the normal form theory. Canonical models treated in the book have only restricted value: They provide information about local behavior of (1) when there is an exponentially stable limit cycle but they say nothing about global behavior of (1), including the transients. The last Chapter 13 describes the relationship between synaptic organizations and dynamical properties of networks of neural oscillators. In other words, the problem of learning and memorization of phase information in the weakly connected network of oscillators corresponding to multiple Andronov-Hopf bifurcation is treated analytically.
Surprisingly the book ends without any conclusions. Also there are no appendices to the book. The references are representative and sufficiently cover the problematics treated in the book." (Ladislav Andrey, Mathematical Reviews)
"...After the introduction, written according to the authors in ordinary language, and well readable even for laymen, follows a nicely written Chapter 2 on bifurcations in neuron dynamics which must be read. Here also spiking and bursting phenomena are clearly described. Chapter 3 contains a short sketch of nonhyperbolic (when the Jacobian matrix of (1) has at least one eigenvalue with zero real part) neural networks. The remaining part of the book is mainly devoted to canonical models (Chapter 4), their derivation (Chapters 6--9), and their analysis (Chapters 10--12). The term canonical model is not precisely defined here. The authors say that a model is canonical if there is a continuous change of variables that transforms any other model from a given class into this one. As the method of deriving the canonical models, the authors exploit the normal form theory. Canonical models treated in the book have only restricted value: They provide information about local behavior of (1) when there is an exponentially stable limit cycle but they say nothing about global behavior of (1), including the transients. The last Chapter 13 describes the relationship between synaptic organizations and dynamical properties of networks of neural oscillators. In other words, the problem of learning and memorization of phase information in the weakly connected network of oscillators corresponding to multiple Andronov-Hopf bifurcation is treated analytically.
Surprisingly the book ends without any conclusions. Also there are no appendices to the book. The references are representative and sufficiently cover the problematics treated in the book." (Ladislav Andrey, Mathematical Reviews)
Caracteristici
Recent studies of bifurcations have inspired a new approach to brain modelling * Shows how some synaptic organisations have especially rich dynamic behaviour * Hoppensteadt is a well-known author