Cantitate/Preț
Produs

Anschauliche Geometrie

Autor David Hilbert, Stephan Cohn-Vossen
de Limba Germană Paperback – 15 apr 2011
Anschauliche Geometrie - wohl selten ist ein Mathematikbuch seinem Titel so gerecht geworden wie dieses außergewöhnliche Werk von Hilbert und Cohn-Vossen. Zuerst 1932 erschienen, hat das Buch nichts von seiner Frische und Kraft verloren. Hilbert hat sein erklärtes Ziel, die Faszination der Geometrie zu vermitteln, bei Generationen von Mathematikern erreicht.
Aus Hilberts Vorwort: "Das Buch soll dazu dienen, die Freude an der Mathematik zu mehren, indem es dem Leser erleichtert, in das Wesen der Mathematik einzudringen, ohne sich einem beschwerlichen Studium zu unterziehen".
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 52486 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 15 apr 2011 52486 lei  6-8 săpt.
Hardback (1) 53028 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 4 mar 1996 53028 lei  6-8 săpt.

Preț: 52486 lei

Preț vechi: 61748 lei
-15% Nou

Puncte Express: 787

Preț estimativ în valută:
10049 10464$ 8338£

Carte tipărită la comandă

Livrare economică 13-27 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642199479
ISBN-10: 364219947X
Pagini: 390
Ilustrații: XX, 364 S. Mit With an appendix by P. Alexandrov.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.59 kg
Ediția:2. Aufl. 2011. Softcover reprint of the original 2nd ed. 1996
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Erstes Kapitel. Die einfachsten Kurven und Flächen.- § 1. Ebene Kurven.- § 2. Zylinder, Kegel, Kegelschnitte und deren Rotationsflächen.- § 3. Die Flächen zweiter Ordnung.- § 4. Fadenkonstruktion des Ellipsoids und konfokale Flächen zweiter Ordnung.- Zweites Kapitel. Reguläre Punktsysteme.- § 5. Ebene Punktgitter.- § 6. Ebene Punktgitter in der Zahlentheorie.- § 7. Punktgitter in drei und mehr Dimensionen.- § B. Krystalle als regelmäßige Punktsysteme.- § 9. Reguläre Punktsysteme und diskontinuierliche Bewegungsgruppen.- § 10. Ebene Bewegungen und ihre Zusammensetzung; Einteilung der ebenen diskontinuierlichen Bewegungsgruppen.- § 11. Die diskontinuierlichen ebenen Bewegungsgruppen mit unendlichem Fundamentalbereich.- § 12. Die krystallographischen Bewegungsgruppen der Ebene. Reguläre Punkt- und Zeigersysteme. Aufbau der Ebene aus kongruenten Bereichen.- § 13. Die krystallographischen Klassen und Gruppen räumlicher Bewegungen. Gruppen und Punktsysteme mit spiegelbildlicher Symmetrie.- § 14. Die regulären Polyeder.- Drittes Kapitel. Konfigurationen.- § 15. Vorbemerkungen über ebene Konfigurationen.- § 16. Die Konfigurationen (73) und (83).- § 17. Die Konfigurationen (93).- § 18. Perspektive, unendlich ferne Elemente und ebenes Dualitätsprinzip.- § 19. Unendlich ferne Elemente und Dualitätsprinzip im Raum. Desarguesscher Satz und Desarguessche Konfiguration (103).- § 20. Gegenüberstellung des Pascalschen und des Desarguesschen Satzes.- § 21. Vorbemerkungen über räumliche Konfigurationen.- § 22. Die Reyesche Konfiguration.- § 23. Reguläre Körper und Zelle und ihre Projektionen.- § 24. Abzählende Methoden der Geometrie.- § 25. Die Schläflische Doppelsechs.- Viertes Kapitel. Differentialgeometrie.- § 26. Ebene Kurven.- § 27.Raumkurven.- § 28. Die Krümmung auf Flächen. Elliptischer, hyperbolischer und parabolischer Fall. Krümmungslinien und Asymptotenlinien, Nabelpunkte, Minimalflächen, Affensättel.- § 29. Sphärische Abbildung und Gausssche Krümmung.- § 30. Abwickelbare Flächen, Regelflächen.- § 31. Verwindung von Raumkurven.- § 32. Elf Eigenschaften der Kugel.- § 33. Verbiegungen von Flächen in sich.- § 34. Elliptische Geometrie.- § 35. Hyperbolische Geometrie; ihr Verhältnis zur euklidischen und elliptischen Geometrie.- § 36. Stereographische Projektion und Kreisverwandtschaften. Poincarésches Modell der hyperbolischen Ebene.- § 37. Methoden der Abbildung. Längentreue, inhaltstreue, geodätische, stetige und konforme Abbildung.- § 38. Geometrische Funktionentheorie, Riemannscher Abbildungssatz, konforme Abbildung im Raum.- § 39. Konforme Abbildung krummer Flächen. Minimalflächen Plateausches Problem.- Fünftes Kapitel. Kinematik.- § 40. Gelenkmechanismen.- § 41. Bewegung ebener Figuren.- § 42. Ein Apparat zur Konstruktion der Ellipse und ihrer Rollkurven.- § 43. Bewegungen im Raum.- Sechstes Kapitel. Topologie.- § 44. Polyeder.- § 45. Flächen.- § 46. Einseitige Flächen.- § 47. Die projektive Ebene als geschlossene Fläche.- § 48. Normaltypen der Flächen endlichen Zusammenhangs.- § 49. Topologische Abbildung einer Fläche auf sich. Fixpunkte. Abbildungsklassen. Universelle Überlagerungsfläche des Torus.- § 50. Konforme Abbildung des Torus.- § 51. Das Problem der Nachbargebiete, das Fadenproblem und das Farbenproblem.

Notă biografică

David Hilbert (* 23. Januar 1862 in Königsberg[1]; † 14. Februar 1943 in Göttingen) Stefan Cohn-Vossen (* 28. Mai 1902 in Breslau; † 25. Juni 1936 in Moskau)

Textul de pe ultima copertă

Anschauliche Geometrie: wohl selten ist ein Mathematikbuch seinem Titel so gerecht geworden, wie dieses außergewöhnliche Werk von Hilbert und Cohn-Vossen. Zuerst 1932 erschienen, hat das Buch nichts von seiner Frische und Kraft verloren. Hilbert hat sein erklärtes Ziel, die Faszination der Geometrie zu vermitteln, bei Generationen von Mathematikern erreicht.
AUS HILBERTS VORWORT: "Das Buch soll dazu dienen, die Freude an der Mathematik zu mehren, indem es dem Leser erleichtert, in das Wesen der Mathematik einzudringen, ohne sich einem beschwerlichen Studium zu unterziehen".

Caracteristici

Ein Klassiker der Geometrie Vermittelt begeisternd die Faszination der Geometrie bei Generationen von Mathematikern Stellt verblüffende Zusammenhänge und zugrundeliegende Leitmotive in der Geometrie verständlich dar Weltbekannte Autoren Includes supplementary material: sn.pub/extras