Cantitate/Preț
Produs

Anticipatory Learning Classifier Systems: Genetic Algorithms and Evolutionary Computation, cartea 4

Autor Martin V. Butz
en Limba Engleză Hardback – 31 ian 2002
Anticipatory Learning Classifier Systems describes the state of the art of anticipatory learning classifier systems-adaptive rule learning systems that autonomously build anticipatory environmental models. An anticipatory model specifies all possible action-effects in an environment with respect to given situations. It can be used to simulate anticipatory adaptive behavior.
Anticipatory Learning Classifier Systems highlights how anticipations influence cognitive systems and illustrates the use of anticipations for (1) faster reactivity, (2) adaptive behavior beyond reinforcement learning, (3) attentional mechanisms, (4) simulation of other agents and (5) the implementation of a motivational module. The book focuses on a particular evolutionary model learning mechanism, a combination of a directed specializing mechanism and a genetic generalizing mechanism. Experiments show that anticipatory adaptive behavior can be simulated by exploiting the evolving anticipatory model for even faster model learning, planning applications, and adaptive behavior beyond reinforcement learning.
Anticipatory Learning Classifier Systems gives a detailed algorithmic description as well as a program documentation of a C++ implementation of the system.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63005 lei  6-8 săpt.
  Springer Us – 5 noi 2012 63005 lei  6-8 săpt.
Hardback (1) 63606 lei  6-8 săpt.
  Springer Us – 31 ian 2002 63606 lei  6-8 săpt.

Din seria Genetic Algorithms and Evolutionary Computation

Preț: 63606 lei

Preț vechi: 79507 lei
-20% Nou

Puncte Express: 954

Preț estimativ în valută:
12179 12682$ 10104£

Carte tipărită la comandă

Livrare economică 14-28 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792376309
ISBN-10: 0792376307
Pagini: 172
Ilustrații: XXVIII, 172 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.46 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria Genetic Algorithms and Evolutionary Computation

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Background.- 1. Anticipations.- 2. Genetic Algorithms.- 3. Learning Classifier Systems.- 2. ACS2.- 1. Framework.- 2. Reinforcement Learning.- 3. The Anticipatory Learning Process.- 4. Genetic Generalization in ACS2.- 5. Interaction of ALP, GA, RL, and Behavior.- 3. Experiments with ACS2.- 1. Gripper Problem Revisited.- 2. Multiplexer Problem.- 3. Maze Environment.- 4. Blocks World.- 5. Hand-Eye Coordination Task.- 6. Result Summary.- 4. Limits.- 1.GA Challenges.- 2.Non-determinism and a First Approach.- 3. Model Aliasing.- 5. Model Exploitation.- 1. Improving Model Learning.- 2. Enhancing Reinforcement Learning.- 3. Model Exploitation Recapitulation.- 6. Related Systems.- 1. Estimated Learning Algorithm.- 2. Dyna.- 3. Schema Mechanism.- 4. Expectancy Model SRS/E.- 7. Summary, Conclusions, and Future Work.- 1. Summary.- 2. Model Representation Enhancements.- 3. Model Learning Modifications.- 4. Adaptive Behavior.- 5. ACS2 in the Future.- Appendices.- References.