Anticipatory Learning Classifier Systems: Genetic Algorithms and Evolutionary Computation, cartea 4
Autor Martin V. Butzen Limba Engleză Hardback – 31 ian 2002
Anticipatory Learning Classifier Systems highlights how anticipations influence cognitive systems and illustrates the use of anticipations for (1) faster reactivity, (2) adaptive behavior beyond reinforcement learning, (3) attentional mechanisms, (4) simulation of other agents and (5) the implementation of a motivational module. The book focuses on a particular evolutionary model learning mechanism, a combination of a directed specializing mechanism and a genetic generalizing mechanism. Experiments show that anticipatory adaptive behavior can be simulated by exploiting the evolving anticipatory model for even faster model learning, planning applications, and adaptive behavior beyond reinforcement learning.
Anticipatory Learning Classifier Systems gives a detailed algorithmic description as well as a program documentation of a C++ implementation of the system.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 630.05 lei 6-8 săpt. | |
Springer Us – 5 noi 2012 | 630.05 lei 6-8 săpt. | |
Hardback (1) | 636.06 lei 6-8 săpt. | |
Springer Us – 31 ian 2002 | 636.06 lei 6-8 săpt. |
Preț: 636.06 lei
Preț vechi: 795.07 lei
-20% Nou
Puncte Express: 954
Preț estimativ în valută:
121.79€ • 126.82$ • 101.04£
121.79€ • 126.82$ • 101.04£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792376309
ISBN-10: 0792376307
Pagini: 172
Ilustrații: XXVIII, 172 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.46 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria Genetic Algorithms and Evolutionary Computation
Locul publicării:New York, NY, United States
ISBN-10: 0792376307
Pagini: 172
Ilustrații: XXVIII, 172 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.46 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria Genetic Algorithms and Evolutionary Computation
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Background.- 1. Anticipations.- 2. Genetic Algorithms.- 3. Learning Classifier Systems.- 2. ACS2.- 1. Framework.- 2. Reinforcement Learning.- 3. The Anticipatory Learning Process.- 4. Genetic Generalization in ACS2.- 5. Interaction of ALP, GA, RL, and Behavior.- 3. Experiments with ACS2.- 1. Gripper Problem Revisited.- 2. Multiplexer Problem.- 3. Maze Environment.- 4. Blocks World.- 5. Hand-Eye Coordination Task.- 6. Result Summary.- 4. Limits.- 1.GA Challenges.- 2.Non-determinism and a First Approach.- 3. Model Aliasing.- 5. Model Exploitation.- 1. Improving Model Learning.- 2. Enhancing Reinforcement Learning.- 3. Model Exploitation Recapitulation.- 6. Related Systems.- 1. Estimated Learning Algorithm.- 2. Dyna.- 3. Schema Mechanism.- 4. Expectancy Model SRS/E.- 7. Summary, Conclusions, and Future Work.- 1. Summary.- 2. Model Representation Enhancements.- 3. Model Learning Modifications.- 4. Adaptive Behavior.- 5. ACS2 in the Future.- Appendices.- References.