Cantitate/Preț
Produs

OmeGA: A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems: Genetic Algorithms and Evolutionary Computation, cartea 6

Autor Dimitri Knjazew
en Limba Engleză Hardback – 31 ian 2002
OmeGA: A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems addresses two increasingly important areas in GA implementation and practice. OmeGA, or the ordering messy genetic algorithm, combines some of the latest in competent GA technology to solve scheduling and other permutation problems. Competent GAs are those designed for principled solutions of hard problems, quickly, reliably, and accurately. Permutation and scheduling problems are difficult combinatorial optimization problems with commercial import across a variety of industries.
This book approaches both subjects systematically and clearly. The first part of the book presents the clearest description of messy GAs written to date along with an innovative adaptation of the method to ordering problems. The second part of the book investigates the algorithm on boundedly difficult test functions, showing principled scale up as problems become harder and longer. Finally, the book applies the algorithm to a test function drawn from the literature of scheduling.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62691 lei  6-8 săpt.
  Springer Us – 30 oct 2012 62691 lei  6-8 săpt.
Hardback (1) 63273 lei  6-8 săpt.
  Springer Us – 31 ian 2002 63273 lei  6-8 săpt.

Din seria Genetic Algorithms and Evolutionary Computation

Preț: 63273 lei

Preț vechi: 79091 lei
-20% Nou

Puncte Express: 949

Preț estimativ în valută:
12110 12588$ 10032£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792374602
ISBN-10: 0792374606
Pagini: 152
Ilustrații: XXI, 152 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria Genetic Algorithms and Evolutionary Computation

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Development of the Omega.- 1.1 The Mechanics of the Fast Messy GA.- 1.2 Using Random Keys for Representation.- 1.3 Designing the OmeGA.- 1.4 Ordering Deceptive Problems.- 1.5 Problem Codings.- 1.6 Experiments.- 1.7 Summary.- 2. Performance Analysis of the Omega.- 2.1 Scale-up Analysis.- 2.2 New Ordering Deceptive Problems.- 2.3 Tests with Uniform and Nonuniform Scaling.- 2.4 Test with Nonuniform Building-Block Size.- 2.5 Tests with Overlapping Building Blocks.- 2.6 Summary.- 3. Application to a Scheduling Problem.- 3.1 Introduction to Scheduling Problems.- 3.2 Problem Formulation.- 3.3 Schedule Representation and Decoding.- 3.4 Experiments.- 3.5 Summary.- 4. Conclusions and Future Work.- Appendices.- Appendix A: The Benchmark Input Data.- Appendix B: Best Schedules.- Appendix C: Source Code of OmeGA.- References.