Applied Multivariate Data Analysis: Volume II: Categorical and Multivariate Methods: Springer Texts in Statistics
Autor J.D. Jobsonen Limba Engleză Hardback – 25 iun 1992
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 400.32 lei 6-8 săpt. | |
Springer – 27 sep 2012 | 400.32 lei 6-8 săpt. | |
Springer – 23 oct 2012 | 650.04 lei 6-8 săpt. | |
Hardback (2) | 407.89 lei 6-8 săpt. | |
Springer – 3 sep 1991 | 407.89 lei 6-8 săpt. | |
Springer – 25 iun 1992 | 656.62 lei 6-8 săpt. |
Din seria Springer Texts in Statistics
- 18% Preț: 695.24 lei
- 23% Preț: 663.96 lei
- 17% Preț: 428.24 lei
- Preț: 359.52 lei
- 20% Preț: 764.88 lei
- Preț: 467.67 lei
- 17% Preț: 525.24 lei
- 15% Preț: 663.19 lei
- 20% Preț: 633.78 lei
- 20% Preț: 697.44 lei
- 20% Preț: 567.27 lei
- 19% Preț: 497.51 lei
- 20% Preț: 700.47 lei
- 15% Preț: 718.48 lei
- 20% Preț: 643.50 lei
- Preț: 255.39 lei
- 20% Preț: 570.33 lei
- Preț: 400.58 lei
- 15% Preț: 637.71 lei
- Preț: 395.64 lei
- Preț: 395.25 lei
- 15% Preț: 572.45 lei
- Preț: 490.38 lei
- Preț: 398.82 lei
- 19% Preț: 626.89 lei
- 18% Preț: 929.07 lei
- 18% Preț: 731.47 lei
- Preț: 386.77 lei
- 18% Preț: 932.79 lei
- 15% Preț: 688.35 lei
- 15% Preț: 588.66 lei
- 18% Preț: 877.75 lei
- 23% Preț: 684.75 lei
- 19% Preț: 543.04 lei
- 18% Preț: 774.29 lei
- 15% Preț: 583.82 lei
- Preț: 414.68 lei
- 15% Preț: 642.83 lei
- 15% Preț: 669.08 lei
- 18% Preț: 797.94 lei
- Preț: 394.68 lei
- Preț: 400.32 lei
- 18% Preț: 744.16 lei
- 15% Preț: 588.66 lei
- Preț: 396.01 lei
Preț: 656.62 lei
Preț vechi: 772.50 lei
-15% Nou
Puncte Express: 985
Preț estimativ în valută:
125.65€ • 132.19$ • 104.30£
125.65€ • 132.19$ • 104.30£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387978048
ISBN-10: 0387978046
Pagini: 732
Ilustrații: XXIX, 732 p.
Dimensiuni: 155 x 235 x 41 mm
Greutate: 1.24 kg
Ediția:1992
Editura: Springer
Colecția Springer
Seria Springer Texts in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387978046
Pagini: 732
Ilustrații: XXIX, 732 p.
Dimensiuni: 155 x 235 x 41 mm
Greutate: 1.24 kg
Ediția:1992
Editura: Springer
Colecția Springer
Seria Springer Texts in Statistics
Locul publicării:New York, NY, United States
Public țintă
Professional/practitionerCuprins
6 Contingency Tables.- 6.1 Multivariate Data Analysis Data Matrices and Measurement Scales.- 6.2 Two-Dimensional Contingency Tables.- 6.3 Multidimensional Contingency Tables.- 6.4 The Weighted Least Squares Approach.- Cited Literature and References.- Exercises for Chapter 6.- Questions for Chapter 6.- 7 Multivariate Distributions Inference Regression and Canonical Correlation.- 7.1 Multivariate Random Variables and Samples.- 7.2 The Multivariate Normal Distribution.- 7.3 Testing for Normality Outliers and Robust Estimation.- 7.4 Inference for the Multivariate Normal.- 7.5 Multivariate Regression and Canonical Correlation.- Cited Literature and References.- Exercises for Chapter 7.- Questions for Chapter 7.- 8 Manova Discriminant Analysis and Qualitative Response Models.- 8.1 Multivariate Analysis of Variance.- 8.2 Discriminant Analysis.- 8.3 Qualitative Response Regression Models and Logistic Regression.- 9 Principal Components Factors and Correspondence Analysis.- 9.1 Principal Components.- 9.2 The Exploratory Factor Analysis Model.- 9.3 Singular Value Decomposition and Matrix Approximation.- 9.4 Correspondence Analysis.- Cited Literature and References.- Exercises for Chapter 9.- Questions for Chapter 9.- 10 Cluster Analysis and Multidimensional Scaling.- 10.1 Proximity Matrices Derived from Data Matrices.- 10.2 Cluster Analysis.- 10.3 Multidimensional Scaling.- Cited Literature and References.- Exercises for Chapter 10.- Questions for Chapter 10.- 1. Matrix Algebra.- 1.1 Matrices.- Matrix.- Transpose of a Matrix.- Row Vector and Column Vector.- Square Matrix.- Symmetric Matrix.- Diagonal Elements.- Trace of a Matrix.- Null or Zero Matrix.- Identity Matrix.- Diagonal Matrix.- Submatrix.- 1.2 Matrix Operations.- Equality of Matrices.- Addition of Matrices.- Additive Inverse.- Scalar Multiplication of a Matrix.- Product of Two Matrices.- Multiplicative Inverse.- Idempotent Matrix.- Kronecker Product.- 1.3 Determinants and Rank.- Determinant.- Nonsingular.- Relation Between Inverse.- and Determinant.- Rank of a Matrix.- 1.4 Quadratic Forms and Positive Definite Matrices.- Quadratic Form.- Congruent Matrix.- Positive Definite.- Positive Semidefinite.- Negative Definite.- Non-negative Definite.- 1.5 Partitioned Matrices.- Product of Partitioned Matrices.- Inverse of a Parti-tioned Matrix.- Determinant of a Partitioned Matrix.- 1.6 Expectations of Random Matrices.- 1.7 Derivatives of Matrix Expressions.- 2. Linear Algebra.- 2.1 Geometric Representation for Vectors.- n Dimensional Space.- Directed Line Segment.- Coordinates.- Addition of Vectors.- Scalar Multiplication.- Length of a Vector.- Angle Between Vectors.- Orthogonal Vectors.- Projection.- 2.2 Linear Dependence And Linear Transformations.- Linearly Dependent Vectors.- Linearly Independent Vectors.- Basis for an n-Dimensional Space.- Generation of a Vector Space and Rank of a Matrix.- Linear Transformation.- Orthogonal Transformation.- Rotation.- Orthogonal Matri.- 2.3 Systems of Equations.- Solution Vector for a System of Equations.- Homoge-neous Equations — Trivial and Nontrivial Solutions.- 2.4 Column Spaces.- Projection Operators and Least.- Squares.- Column Space.- Orthogonal Complement.- Projection.- Ordinary Least Squares Solution Vector.- Idempotent Matrix — Projection Operator.- 3. Eigenvalue Structure and Singular Value Decomposition.- 3.1 Eigenvalue Structure for Square Matrices.- Eigenvalues and Eigenvectors.- Characteristic Polynomial.- Characteristic Roots.- Latent Roots.- Eigen-values.- Eigenvalues and Eignevectors for Real Symmetric Matrices and SomeProperties.- Spectral Decomposition.- Matrix Approximation.- Eigenvalues for Nonnegative Definite Matrices.- 3.2 Singular Value Decomposition.- Left and Right Singular Vectors.- Complete Singular Value Decomposition.- Generalized Singular Value Decomposition.- Relationship to Spectral Decomposition and Eigenvalues.- Data Appendix For Volume II.- Data Set V1.- Data Set V2.- Data Set V3.- Data Set V4.- Data Set V5.- Data Set V6.- Data Set V7.- Data Set V8.- Data Set V9.- Data Set V10.- Data Set Vll.- Data Set V12.- Data Set V13.- Data Set V14.- Data Set V15.- Data Set V16.- Data Set V17.- Data Set V18.- Data Set V19.- Data Set V20.- Data Set V21.- Data Set V22.- Table V1.- Table V2.- Table V3.- Table V4.- Table V5.- Table V6.- Table V7.- Table V8.- Table V9.- Table V10.- Table V11.- Table V12.- Table V13.- Table V14.- Table V15.- Table V16.- Table V17.- Table V18.- Table V19.- Table V20.- Table V21.- Table V22.- Author Index.
Recenzii
"On the whole this volume on applied multivariate data analysis is a comprehensive treatise which will support students and teachers to a full extent in their coursework and researchers will find an easy ready-made material for the analysis of their multivariate data to arrive at correct conclusions. This is a masterpiece text." (Zentralblatt fuer Mathematik)
Caracteristici
Includes supplementary material: sn.pub/extras