Cantitate/Preț
Produs

Arbitrage Pricing of Contingent Claims: Lecture Notes in Economics and Mathematical Systems, cartea 254

Autor Sigrid Müller
en Limba Engleză Paperback – oct 1985

Din seria Lecture Notes in Economics and Mathematical Systems

Preț: 37451 lei

Nou

Puncte Express: 562

Preț estimativ în valută:
7170 7463$ 5902£

Carte tipărită la comandă

Livrare economică 01-15 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540159735
ISBN-10: 3540159738
Pagini: 168
Ilustrații: VIII, 156 p.
Dimensiuni: 170 x 244 x 9 mm
Greutate: 0.28 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Economics and Mathematical Systems

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Introduction.- 2 The Valuation of Contingent Claims: A Survey.- 3 Existence of Consistent Price Systems.- 3.1 The basic model.- 3.2 Arbitrage and equivalent martingale measures.- 3.3 Examples.- 4 The Continuous-time Trading Model.- 4.1 Continuous-time self-financing trading strategies.- 4.2 A characterization of P*-attainable contingent claims.- 4.3 Classes of P*-attainable contingent claims for specific security price processes.- 4.4 The relationship between P*-attainable contingent claims and solutions of associated differencedifferential equations.- 4.5 Complete securities market models.- 4.6 Counterexamples.- 5 Extensions of the BLACK/SCHOLES Model.- 5.1 Determination of an equivalent martingale measure.- 5.2 The relationship between the original and the discounted model.- 5.3 Completeness and the determination of self-financing trading strategies in the case of a European call option.- 5.4 Completeness and the relaxation of assumptions.- 5.5 Incompleteness caused by variations of assumptions.- 6 From Preference-free to Preference-dependent Valuations of Contingent Claims: the Hedge Approach in Incomplete Models.- 7 Conclusion.- References.- A Appendix.- A 1 Notation.- A 2 Mathematical Tools.- A 2.1 Miscellany.- A 2.2 Measure theory.- A 2.3 Stochastic calculus.