Cantitate/Preț
Produs

Artificial Neural Networks and Machine Learning – ICANN 2022: 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings, Part I: Lecture Notes in Computer Science, cartea 13529

Editat de Elias Pimenidis, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas, Mehmet Aydin
en Limba Engleză Paperback – 7 sep 2022
The 4-volumes set of LNCS 13529, 13530, 13531, and 13532 constitutes the proceedings of the 31st International Conference on Artificial Neural Networks, ICANN 2022, held in Bristol, UK, in September 2022.
The total of 255 full papers presented in these proceedings was carefully reviewed and selected from 561 submissions. ICANN 2022 is a dual-track conference featuring tracks in brain inspired computing and machine learning and artificial neural networks, with strong cross-disciplinary interactions and applications.
Chapter “Sim-to-Real Neural Learning with Domain Randomisation for Humanoid Robot Grasping ” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (4) 34946 lei  6-8 săpt.
  Springer International Publishing – 7 sep 2022 34946 lei  6-8 săpt.
  Springer Nature Switzerland – 7 sep 2022 35093 lei  6-8 săpt.
  Springer Nature Switzerland – 7 sep 2022 35174 lei  6-8 săpt.
  Springer Nature Switzerland – 7 sep 2022 35189 lei  6-8 săpt.

Din seria Lecture Notes in Computer Science

Preț: 34946 lei

Preț vechi: 43683 lei
-20% Nou

Puncte Express: 524

Preț estimativ în valută:
6690 6954$ 5547£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031159183
ISBN-10: 3031159187
Pagini: 761
Ilustrații: XXII, 761 p. 23 illus.
Dimensiuni: 155 x 235 mm
Greutate: 1.08 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Computer Science

Locul publicării:Cham, Switzerland

Cuprins

Deep Learning.- , Neural Network Theory.- Relational Learning, Reinforcement Learning.- Natural language processing, Generative Models.- Graphical Models, Recommender Systems.- Image Processing, Recurrent Networks.- Evolutionary Neural Networks.- Unsupervised Neural Networks.- Neural Network Models.

Textul de pe ultima copertă

Chapter “Sim-to-Real Neural Learning with Domain Randomisation for Humanoid Robot Grasping ” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.​