Asymptotic Distribution of Eigenvalues of Differential Operators: Mathematics and its Applications, cartea 53
Autor Serge Levendorskiien Limba Engleză Paperback – 21 apr 2014
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 380.54 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 21 apr 2014 | 380.54 lei 6-8 săpt. | |
Hardback (1) | 389.18 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 30 sep 1990 | 389.18 lei 6-8 săpt. |
Din seria Mathematics and its Applications
- Preț: 473.55 lei
- 18% Preț: 883.19 lei
- Preț: 381.89 lei
- Preț: 426.42 lei
- 23% Preț: 320.53 lei
- 20% Preț: 363.78 lei
- Preț: 423.80 lei
- 22% Preț: 320.55 lei
- Preț: 426.63 lei
- 15% Preț: 449.89 lei
- Preț: 419.10 lei
- 13% Preț: 350.83 lei
- 22% Preț: 332.60 lei
- Preț: 356.63 lei
- 18% Preț: 1102.61 lei
- Preț: 385.07 lei
- 15% Preț: 638.48 lei
- 15% Preț: 629.83 lei
- 15% Preț: 634.50 lei
- 15% Preț: 634.50 lei
- Preț: 381.68 lei
- Preț: 386.20 lei
- 15% Preț: 638.99 lei
- 20% Preț: 638.38 lei
- 15% Preț: 637.04 lei
- Preț: 374.69 lei
- Preț: 385.07 lei
- 15% Preț: 644.11 lei
- 15% Preț: 645.07 lei
- Preț: 386.36 lei
Preț: 380.54 lei
Nou
Puncte Express: 571
Preț estimativ în valută:
72.84€ • 76.38$ • 60.18£
72.84€ • 76.38$ • 60.18£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401073561
ISBN-10: 9401073562
Pagini: 300
Ilustrații: XVIII, 280 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.42 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401073562
Pagini: 300
Ilustrații: XVIII, 280 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.42 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. The Weyl-Hörmander Calculus of Pseudodifferential Operators.- §1. Classes of Symbols.- §2. Estimates for Solutions of Schrödinger-Type Equations.- §3. The Fundamental Theorems of Calculus.- §4. Continuity of Pseudodifferential Operators.- §5. Weight Spaces of Sobolev Type.- §6. Action of Pseudodifferential Operators in Weight Spaces.- 2. Basic Theorems of the Method of Approximate Spectral Projection for Scalar and Matrix Operators.- §7. Formulation of the Basic Theorems.- §8. Auxiliary Propositions.- §9. Proof of Theorem 7.2 for the Scalar Case.- §10. Proof of Theorem 7.3 for the Scalar Case.- §11. Proofs of Theorems 7.2 and 7.3 for the Matrix Case.- §12. Proofs of Theorems 7.1, 7.4, and 7.5.- 3. Operators in a Bounded Domain.- §13. Douglis-Nirenberg Elliptic Operators. Dirichlet-Type Problems.- §14. General Boundary Value Problems for Elliptic Operators.- §15. Problems with Resolvable Constraints.- §16. Electromagnetic Resonator.- §17. Asymptotics of the Discrete Spectrum of Douglis—Nirenberg Operators with a Totally Disconnected Essential Spectrum.- §18. Linearized Stationary Navier—Stokes System.- §19. Asymptotics for Eigenfrequencies of a Shell in a Vacuum.- 4. Operators in Unbounded Domains.- §20. Schrödinger Operators with Increasing Potential.- §21. Asymptotics of a Discrete Spectrum of Schrödinger Operators and Dirac Operators with Decreasing Potentials.- 5. Asymptotics of the Spectrum of Pseudodifferential Operators with Operator-Valued Symbols and Some Applications.- §22. Pseudodifferential Operators with Operator-Valued Symbols.- §23. Boundary Value Problems in Strongly Anisotropic Domains.- 6. Degenerate Differential Operators.- §24. General Analysis of Degenerate Operators and Generalizations of the Weyl Formula.- §25.Schrödinger Operators with Degenerate Homogeneous Potential.- §26. Model Problems for Degenerate Differential Operators in a Bounded Domain.- §27. Degenerate Differential Operators in a Bounded Domain.- §28. Degenerate Differential Operators in an Unbounded Domain.- Appendix: Basic Variational Theorems.- A Brief Review of the Bibliography.- Notation Index.