Cantitate/Preț
Produs

Asymptotics of Elliptic and Parabolic PDEs: and their Applications in Statistical Physics, Computational Neuroscience, and Biophysics: Applied Mathematical Sciences, cartea 199

Autor David Holcman, Zeev Schuss
en Limba Engleză Paperback – 5 ian 2019
This is a monograph on the emerging branch of mathematical biophysics combining asymptotic analysis with numerical and stochastic methods to analyze partial differential equations arising in biological and physical sciences. In more detail, the book presents the analytic methods and tools for approximating solutions of mixed boundary value problems, with particular emphasis on the narrow escape problem. Informed throughout by real-world applications, the book includes topics such as the Fokker-Planck equation, boundary layer analysis, WKB approximation, applications of spectral theory, as well as recent results in narrow escape theory. Numerical and stochastic aspects, including mean first passage time and extreme statistics, are discussed in detail and relevant applications are presented in parallel with the theory.
Including background on the classical asymptotic theory of differential equations, this book is written for scientists of various backgrounds interested inderiving solutions to real-world problems from first principles.
Citește tot Restrânge

Din seria Applied Mathematical Sciences

Preț: 71474 lei

Preț vechi: 87163 lei
-18% Nou

Puncte Express: 1072

Preț estimativ în valută:
13681 14345$ 11304£

Carte tipărită la comandă

Livrare economică 29 ianuarie-12 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030083199
ISBN-10: 3030083195
Pagini: 444
Ilustrații: XXIII, 444 p. 103 illus., 56 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.65 kg
Ediția:Softcover reprint of the original 1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Applied Mathematical Sciences

Locul publicării:Cham, Switzerland

Cuprins

Part I. Singular Perturbations of Elliptic Boundary Problems.- 1 Second-Order Elliptic Boundary Value Problems with a Small Leading Part.- 2 A Primer of Asymptotics for ODEs.- 3 Singular Perturbations in Higher Dimensions.- 4 Eigenvalues of a Non-self-adjoint Elliptic Operator.- 5 Short-time Asymptotics of the Heat Kernel.- Part II Mixed Boundary Conditions for Elliptic and Parabolic Equations.- 6 The Mixed Boundary Value Problem.- 7 THe Mixed Boundary Value Problem in R2.- 8 Narrow Escape in R3.- 9 Short-time Asymptotics of the Heat Kernel and Extreme Statistics of the NET.- 10 The Poisson–Nernst–Planck Equations in a Ball.- 11 Reconstruction of Surface Diffusion from Projected Data.- 12 Asymptotic Formulas in Molecular and Cellular Biology.- Bibliography.- Index.

Recenzii

“The monograph under review deals with asymptotic methods for the construction of solutions to boundary value problems for partial differential equations arising in applications, as molecular and cellular biology and biophysics. … The monograph is well written, interesting, and surely recommended to applied mathematicians, engineers, physicists, chemists, and neuroscientists interested into analytical methods for the asymptotic analysis of elliptic and parabolic PDEs of relevance in applications.” (Paolo Musolino, zbMATH 1402.35004, 2019)

Notă biografică

David Holcman is an applied mathematician and computational biologist. He developed mathematical modeling and simulations of molecular dynamics in micro-compartments in cell biology using stochastic processes and PDEs. He has derived physical principles of physiology at various scales, including diffusion laws in dendritic spines, potential wells hidden in super-resolution single particle trajectories or first looping time in polymer models. Together with Zeev Schuss, he developed the Narrow escape and Dire strait time theory.

Zeev Schuss is an applied mathematician who significantly shaped the field of modern asymptotics in PDEs with applications to first passage time problems. Methods developed have been applied to various fields, including signal processing, statistical physics, and molecular biophysics.

Textul de pe ultima copertă

This is a monograph on the emerging branch of mathematical biophysics combining asymptotic analysis with numerical and stochastic methods to analyze partial differential equations arising in biological and physical sciences. In more detail, the book presents the analytic methods and tools for approximating solutions of mixed boundary value problems, with particular emphasis on the narrow escape problem. Informed throughout by real-world applications, the book includes topics such as the Fokker-Planck equation, boundary layer analysis, WKB approximation, applications of spectral theory, as well as recent results in narrow escape theory. Numerical and stochastic aspects, including mean first passage time and extreme statistics, are discussed in detail and relevant applications are presented in parallel with the theory.
Including background on the classical asymptotic theory of differential equations, this book is written for scientists of various backgrounds interested in deriving solutions to real-world problems from first principles.

Caracteristici

Discusses asymptotic formulae in the context of the life sciences Presents applications in molecular and cellular biology, biophysics, as well as computational neuroscience Contains over 100 figures Includes bibliographical notes