Automatic Re-engineering of Software Using Genetic Programming: Genetic Programming, cartea 2
Autor Conor Ryanen Limba Engleză Hardback – 30 noi 1999
Automatic Re-engineering of Software Using Genetic Programming shows that there are applications where it is more practical to use GP to assist with software engineering rather than to entirely replace it. It also demonstrates how the author isolated aspects of a problem that were particularly suited to GP, and used traditional software engineering techniques in those areas for which they were adequate.
Automatic Re-engineering of Software Using Genetic Programming is an excellent resource for researchers in this exciting new field.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 628.12 lei 6-8 săpt. | |
Springer Us – 5 noi 2012 | 628.12 lei 6-8 săpt. | |
Hardback (1) | 633.63 lei 6-8 săpt. | |
Springer Us – 30 noi 1999 | 633.63 lei 6-8 săpt. |
Preț: 633.63 lei
Preț vechi: 792.04 lei
-20% Nou
Puncte Express: 950
Preț estimativ în valută:
121.32€ • 126.33$ • 100.66£
121.32€ • 126.33$ • 100.66£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792386537
ISBN-10: 0792386531
Pagini: 140
Ilustrații: XIII, 140 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.39 kg
Ediția:2000
Editura: Springer Us
Colecția Springer
Seria Genetic Programming
Locul publicării:New York, NY, United States
ISBN-10: 0792386531
Pagini: 140
Ilustrații: XIII, 140 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.39 kg
Ediția:2000
Editura: Springer Us
Colecția Springer
Seria Genetic Programming
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Software Re-Engineering.- 1.2 Auto-parallelization.- 1.3 Genetic Programming.- 1.4 Outline.- 2. Genetic Programming.- 2.1 Introduction.- 2.2 Evolution and Natural Selection.- 2.3 Evolutionary Algorithms.- 2.4 The Simple Genetic Algorithm.- 2.5 Genetic Programming.- 2.6 Other Evolutionary Algorithms.- 2.7 Advanced topics in Evolutionary Algorithms.- 2.8 Evolution and Learning.- 2.9 Summary.- 3. Software Re-Engineering.- 3.1 Introduction.- 3.2 Auto-parallelization.- 3.3 Parallel Programming.- 3.4 Parallelization Problems.- 3.5 Parallel Compilers.- 3.6 On using Genetic Programming.- 3.7 An Automatic Parallelization System.- 3.8 Summary.- 4. Multi-Objective Problems.- 4.1 Introduction.- 4.2 Example Problem — Sorting Networks.- 4.3 Maintaining Diversity In Artificial Evolution.- 4.4 Pygmies And Civil Servants.- 4.5 Gender or Race?.- 4.6 Multi-modal Functions.- 4.7 Conclusion.- 5. Paragen I.- 5.1 Introduction.- 5.2 Problem Statement.- 5.3 Paragen — The First Results.- 5.4 Paragen and Races.- 5.5 Engineering vs. Re-Engineering.- 5.6 Conclusion.- 6. Practical Considerations.- 6.1 Provability.- 6.2 Scalability.- 6.3 Loop Complexity.- 6.4 Communication and Scheduling.- 6.5 Multiprocessor Scheduling.- 6.6 Genetic Algorithms.- 6.7 Conclusions.- 7. Paragen II.- 7.1 Transformations.- 7.2 Atoms and Loops.- 7.3 Atoms, loops and modes.- 7.4 Genetic Structure.- 7.5 Example Individual.- 7.6 Conclusion.- 8. Conclusions.- 8.1 Future Work.- 8.2 Recommendations.- References.