Backpropagation: Theory, Architectures, and Applications: Developments in Connectionist Theory Series
Editat de Yves Chauvin, David E. Rumelharten Limba Engleză Paperback – feb 1995
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 555.50 lei 43-57 zile | |
Taylor & Francis – feb 1995 | 555.50 lei 43-57 zile | |
Hardback (1) | 826.55 lei 43-57 zile | |
Taylor & Francis – feb 1995 | 826.55 lei 43-57 zile |
Preț: 555.50 lei
Preț vechi: 744.56 lei
-25% Nou
Puncte Express: 833
Preț estimativ în valută:
106.31€ • 112.43$ • 88.68£
106.31€ • 112.43$ • 88.68£
Carte tipărită la comandă
Livrare economică 30 decembrie 24 - 13 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780805812596
ISBN-10: 0805812598
Pagini: 576
Ilustrații: illustrations
Dimensiuni: 152 x 229 x 35 mm
Greutate: 0.79 kg
Ediția:1
Editura: Taylor & Francis
Colecția Psychology Press
Seria Developments in Connectionist Theory Series
Locul publicării:Oxford, United Kingdom
ISBN-10: 0805812598
Pagini: 576
Ilustrații: illustrations
Dimensiuni: 152 x 229 x 35 mm
Greutate: 0.79 kg
Ediția:1
Editura: Taylor & Francis
Colecția Psychology Press
Seria Developments in Connectionist Theory Series
Locul publicării:Oxford, United Kingdom
Public țintă
ProfessionalCuprins
Contents: D.E. Rumelhart, R. Durbin, R. Golden, Y. Chauvin, Backpropagation: The Basic Theory. A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, K.J. Lang, Phoneme Recognition Using Time-Delay Neural Networks. C. Schley, Y. Chauvin, V. Henkle, Automated Aircraft Flare and Touchdown Control Using Neural Networks. F.J. Pineda, Recurrent Backpropagation Networks. M.C. Mozer, A Focused Backpropagation Algorithm for Temporal Pattern Recognition. D.H. Nguyen, B. Widrow, Nonlinear Control with Neural Networks. M.I. Jordan, D.E. Rumelhart, Forward Models: Supervised Learning with a Distal Teacher. S.J. Hanson, Backpropagation: Some Comments and Variations. A. Cleeremans, D. Servan-Schreiber, J.L. McClelland, Graded State Machines: The Representation of Temporal Contingencies in Feedback Networks. S. Becker, G.E. Hinton, Spatial Coherence as an Internal Teacher for a Neural Network. J.R. Bachrach, M.C. Mozer, Connectionist Modeling and Control of Finite State Systems Given Partial State Information. P. Baldi, Y. Chauvin, K. Hornik, Backpropagation and Unsupervised Learning in Linear Networks. R.J. Williams, D. Zipser, Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. P. Baldi, Y. Chauvin, When Neural Networks Play Sherlock Homes. P. Baldi, Gradient Descent Learning Algorithms: A Unified Perspective.
Notă biografică
Yves Chauvin, David E. Rumelhart
Descriere
Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation.