Bayesian Scientific Computing: Applied Mathematical Sciences, cartea 215
Autor Daniela Calvetti, Erkki Somersaloen Limba Engleză Hardback – 10 mar 2023
Din seria Applied Mathematical Sciences
- 18% Preț: 431.09 lei
- 17% Preț: 435.89 lei
- 17% Preț: 437.01 lei
- 24% Preț: 906.74 lei
- 23% Preț: 659.01 lei
- Preț: 375.64 lei
- 18% Preț: 891.04 lei
- 18% Preț: 778.92 lei
- 18% Preț: 931.26 lei
- 15% Preț: 632.42 lei
- 24% Preț: 808.01 lei
- Preț: 382.64 lei
- Preț: 443.52 lei
- Preț: 186.35 lei
- Preț: 391.09 lei
- 18% Preț: 947.32 lei
- 15% Preț: 630.46 lei
- 15% Preț: 518.14 lei
- Preț: 404.85 lei
- Preț: 382.41 lei
- 18% Preț: 721.12 lei
- 18% Preț: 1382.41 lei
- 15% Preț: 696.82 lei
- Preț: 387.52 lei
- 18% Preț: 996.64 lei
- Preț: 395.05 lei
- 18% Preț: 1107.23 lei
- 18% Preț: 1111.87 lei
- 18% Preț: 1360.66 lei
- 18% Preț: 1106.74 lei
- 18% Preț: 1117.59 lei
- 15% Preț: 639.94 lei
Preț: 771.67 lei
Preț vechi: 941.05 lei
-18% Nou
Puncte Express: 1158
Preț estimativ în valută:
147.92€ • 155.25$ • 121.100£
147.92€ • 155.25$ • 121.100£
Carte tipărită la comandă
Livrare economică 23 ianuarie-06 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031238239
ISBN-10: 3031238230
Pagini: 286
Ilustrații: XVII, 286 p. 77 illus., 55 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.6 kg
Ediția:2023
Editura: Springer International Publishing
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:Cham, Switzerland
ISBN-10: 3031238230
Pagini: 286
Ilustrații: XVII, 286 p. 77 illus., 55 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.6 kg
Ediția:2023
Editura: Springer International Publishing
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:Cham, Switzerland
Cuprins
Inverse problems and subjective computing.- Linear algebra.- Continuous and discrete multivariate distributions.- Introduction to sampling.- The praise of ignorance: randomness as lack of certainty.- Enter subject: Construction of priors.- Posterior densities, ill-conditioning, and classical regularization.- Conditional Gaussian densities.- Iterative linear solvers and priorconditioners.- Hierarchical models and Bayesian sparsity.- Sampling: the real thing.- Dynamic methods and learning from the past.- Bayesian filtering and Gaussian densities.-
Textul de pe ultima copertă
The once esoteric idea of embedding scientific computing into a probabilistic framework, mostly along the lines of the Bayesian paradigm, has recently enjoyed wide popularity and found its way into numerous applications. This book provides an insider’s view of how to combine two mature fields, scientific computing and Bayesian inference, into a powerful language leveraging the capabilities of both components for computational efficiency, high resolution power and uncertainty quantification ability. The impact of Bayesian scientific computing has been particularly significant in the area of computational inverse problems where the data are often scarce or of low quality, but some characteristics of the unknown solution may be available a priori. The ability to combine the flexibility of the Bayesian probabilistic framework with efficient numerical methods has contributed to the popularity of Bayesian inversion, with the prior distribution being the counterpart of classical regularization. However, the interplay between Bayesian inference and numerical analysis is much richer than providing an alternative way to regularize inverse problems, as demonstrated by the discussion of time dependent problems, iterative methods, and sparsity promoting priors in this book. The quantification of uncertainty in computed solutions and model predictions is another area where Bayesian scientific computing plays a critical role. This book demonstrates that Bayesian inference and scientific computing have much more in common than what one may expect, and gradually builds a natural interface between these two areas.
Caracteristici
Provides accessible exposition Presents work of internationally known authors Includes supplementary material