Bifurcation and Stability in Nonlinear Dynamical Systems: Nonlinear Systems and Complexity, cartea 28
Autor Albert C. J. Luoen Limba Engleză Hardback – 31 ian 2020
- Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums;
- Discusses dynamics of infinite-equilibrium systems;
- Demonstrates higher-order singularity.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 449.32 lei 38-44 zile | |
Springer International Publishing – 26 aug 2021 | 449.32 lei 38-44 zile | |
Hardback (1) | 462.96 lei 38-44 zile | |
Springer International Publishing – 31 ian 2020 | 462.96 lei 38-44 zile |
Din seria Nonlinear Systems and Complexity
- 18% Preț: 724.05 lei
- 15% Preț: 637.85 lei
- 15% Preț: 631.77 lei
- 24% Preț: 738.03 lei
- 18% Preț: 1084.97 lei
- 18% Preț: 1362.07 lei
- 24% Preț: 801.68 lei
- 15% Preț: 632.73 lei
- 15% Preț: 630.46 lei
- 15% Preț: 632.24 lei
- Preț: 383.00 lei
- Preț: 386.95 lei
- 15% Preț: 629.38 lei
- 15% Preț: 634.32 lei
- 15% Preț: 634.50 lei
- 18% Preț: 871.72 lei
- 15% Preț: 634.96 lei
- 20% Preț: 567.43 lei
- 24% Preț: 738.96 lei
- 18% Preț: 773.06 lei
- 20% Preț: 449.32 lei
- 20% Preț: 403.68 lei
- 24% Preț: 932.01 lei
- 24% Preț: 777.29 lei
- 24% Preț: 779.75 lei
- 18% Preț: 1096.25 lei
- 18% Preț: 1507.86 lei
- 18% Preț: 773.55 lei
- 18% Preț: 879.76 lei
- 15% Preț: 627.29 lei
- 18% Preț: 932.01 lei
Preț: 462.96 lei
Preț vechi: 578.70 lei
-20% Nou
Puncte Express: 694
Preț estimativ în valută:
88.60€ • 92.03$ • 73.60£
88.60€ • 92.03$ • 73.60£
Carte tipărită la comandă
Livrare economică 28 ianuarie-03 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030229092
ISBN-10: 3030229092
Pagini: 375
Ilustrații: XI, 411 p. 78 illus., 64 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.98 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Nonlinear Systems and Complexity
Locul publicării:Cham, Switzerland
ISBN-10: 3030229092
Pagini: 375
Ilustrații: XI, 411 p. 78 illus., 64 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.98 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Nonlinear Systems and Complexity
Locul publicării:Cham, Switzerland
Cuprins
Stability of equilibriums.- Bifurcation of equilibriums.- Low-dimensional dynamical system.- Equilibrium and higher-singularity.- Low-degree polynomial systems.- (2m)th-degree polynomial systems.- (2m+1)th-degree polynomial systems.- Infinite-equilibrium systems.
Recenzii
“The book should be of interest to research and practising scientists and engineers as well as Ph.D. students in the field of nonlinear dynamical systems and control theory.” (Clementina Mladenova, zbMATH 1440.93005, 2020)
Notă biografică
Dr. Albert C. J. Luo is Distinguished Research Professor in the Department of Mechanical Engineering, Southern Illinois University Edwardsville, Edwardsville, IL.
Textul de pe ultima copertă
This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control.
- Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums;
- Discusses dynamics of infinite-equilibrium systems;
- Demonstrates higher-order singularity.
Caracteristici
Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums Discusses dynamics of infinite-equilibrium systems Demonstrates higher-order singularity