Cantitate/Preț
Produs

Bone Tissue Engineering: Bench to Bedside Using 3D Printing

Editat de Fernando P.S. Guastaldi, Bhushan Mahadik
en Limba Engleză Paperback – 9 mar 2023
This book provides a comprehensive overview of the state-of-the-art research as well as current challenges and strategies to reconstruct large bone defects employing 3D printing technology. Various topics covered include different 3D printing technologies that can be applied for bioengineering bone, the aspects of basic bone biology critical for clinical translation, tissue engineering platforms to investigate the bone niche microenvironment, the pathway to clinical translation, and regulatory hurdles.
Bone Tissue Engineering: State-of-the-Art in 3D Printing is an ideal book for students and researchers interested in learning more about the latest advances in employing different 3D printing technologies for bone tissue engineering. 
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 94669 lei  39-44 zile
  Springer International Publishing – 9 mar 2023 94669 lei  39-44 zile
Hardback (1) 95388 lei  39-44 zile
  Springer International Publishing – 8 mar 2022 95388 lei  39-44 zile

Preț: 94669 lei

Preț vechi: 124565 lei
-24% Nou

Puncte Express: 1420

Preț estimativ în valută:
18126 18875$ 15039£

Carte tipărită la comandă

Livrare economică 10-15 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030920166
ISBN-10: 303092016X
Pagini: 317
Ilustrații: XIII, 317 p. 81 illus., 74 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.6 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

1. Introduction (market, clinical need, bone grafts) a. Choice 1: Alan S Herford, DDS, MD (Loma Linda University).- 2. Basic bone biology a. Choice 1: David T Scadden, MD (Massachusetts General Hospital).- 3. Principles of bone tissue engineering a. Choice 1: Antonios G Mikos, PhD (Rice University) b. Choice 2: Susmita Bose, PhD (Washington State University).- 4. Additive manufacturing technologies a. Choice 1: Anthony Atala, MD (Wake Forest School of Medicine) b. Choice 2: Jennifer A Lewis, ScD (Harvard University).- 5. 3D printing scaffolds for oral and maxillofacial regeneration a. Choice 1: Fernando PS Guastaldi, PhD (Massachusetts General Hospital) and Maria J Troulis, MsC (Massachusetts General Hospital).- 6. 3D printing scaffolds for orthopedic joint tissue engineering a. Choice 1: Anthony J Melchiorri, PhD (Rice University).- 7. 3D bioprinting and nanotechnology for bone tissue engineering a. Choice 1: Bhushan Mahadik, PhD (University of Maryland).- 8. Bioreactors and scale-up in bone tissue engineering a. Choice 1: John P Fisher, PhD (University of Maryland).- 9. Commercialization, legal, and regulatory considerations to translate 3D printing-based products to the marketplace and the clinic a. Choice 1: Anthony Ratcliffe, PhD (Synthasome, Inc.).- 10. Future directions and challenges a. Choice 1: James J Yoo, PhD (Wake Forest School of Medicine) b. Choice 2: Fernando PS Guastaldi, PhD (Massachusetts General Hospital) and Bhushan Mahadik, PhD (University of Maryland).

Notă biografică

Fernando P. S. Guastaldi is an Assistant Professor of Oral and Maxillofacial Surgery at Harvard School of Dental Medicine (HSDM) and Director of the Skeletal Biology Research Center (SBRC), Department of Oral and Maxillofacial Surgery (OMFS), Massachusetts General Hospital (MGH). He completed his DDS (2006) at the Dental School of Ribeirão Preto (Brazil). He is Specialist in OMFS (2010), and he completed is MSc (2010) and PhD (2013) in OMFS at the Dental School of Araçatuba (UNESP/Brazil). He was a Visiting Scholar (2012) at the Department of Biomaterials and Biomimetics at New York University College of Dentistry (NYUCD). He completed two Postdoctoral Research Fellowships, the first at the Dental School of Araraquara (UNESP/Brazil) (2014–2017) and the second at MGH/HSDM (2017–2019) focused on bone regeneration of swine mandible critical-sized defects by leveraging principles of tissue engineering and 3D printing. Dr. Guastaldi has research publications and book chapters in the field of bone regeneration, maxillofacial reconstruction, and temporomandibular joint (TMJ) regeneration. 

Bhushan P. Mahadik is the Director of Tissue Engineering at Prellis Biologics. He completed his BS (2008) at the University of California, Berkeley, in chemical engineering and his MS (2010) and PhD  2014) at the University of Illinois at Urbana Champaign (UIUC) in chemical and biomolecular engineering. His PhD and postdoctoral research at UIUC focused on engineering the hematopoietic stem cell niche within the bone marrow by leveraging principles of biomaterial design and microfluidic platforms. He joined the University of Maryland in 2017 as the Assistant Director for the NIH/NIBIB Center for Engineering Complex Tissues (CECT), where he helped lead the research, collaborative, administrative, and strategic growth of CECT as a leading resource for the 3D printing and fabrication of engineered tissues. Dr. Mahadik has several research publications in the field of tissue engineering and regenerative medicine.

Textul de pe ultima copertă

This book provides a comprehensive overview of the state-of-the-art research as well as current challenges and strategies to reconstruct large bone defects employing 3D printing technology. Various topics covered include different 3D printing technologies that can be applied for bioengineering bone, the aspects of basic bone biology critical for clinical translation, tissue engineering platforms to investigate the bone niche microenvironment, the pathway to clinical translation, and regulatory hurdles.
Bone Tissue Engineering: State-of-the-Art in 3D Printing is an ideal book for students and researchers interested in learning more about the latest advances in employing different 3D printing technologies for bone tissue engineering. 

Caracteristici

Provides an essential overview of different 3D printing technologies that can be used for bone tissue engineering
Illustrates current clinical approaches for the reconstruction of large bone defects
Covers the latest advances in 3D bioprinting and nanotechnology as it relates to bone tissue engineering