Combinatorics and Commutative Algebra: Progress in Mathematics, cartea 41
Autor Richard P. Stanleyen Limba Engleză Paperback – 15 oct 2004
New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors.
Din seria Progress in Mathematics
- 24% Preț: 740.76 lei
- Preț: 308.19 lei
- 20% Preț: 695.86 lei
- Preț: 362.50 lei
- 20% Preț: 584.60 lei
- Preț: 308.12 lei
- 18% Preț: 727.79 lei
- 9% Preț: 766.38 lei
- 20% Preț: 631.07 lei
- 24% Preț: 638.85 lei
- 15% Preț: 564.21 lei
- Preț: 383.85 lei
- Preț: 381.20 lei
- Preț: 366.08 lei
- Preț: 379.14 lei
- 18% Preț: 708.63 lei
- 15% Preț: 633.81 lei
- 15% Preț: 630.62 lei
- 18% Preț: 872.17 lei
- Preț: 374.13 lei
- Preț: 379.88 lei
- Preț: 367.77 lei
- 15% Preț: 516.38 lei
- 15% Preț: 624.42 lei
- 15% Preț: 632.06 lei
- Preț: 370.38 lei
- Preț: 381.20 lei
- Preț: 387.19 lei
- 15% Preț: 679.23 lei
- Preț: 416.91 lei
- Preț: 374.87 lei
- 18% Preț: 876.75 lei
- 18% Preț: 779.29 lei
- 15% Preț: 621.74 lei
- 18% Preț: 1097.38 lei
- 15% Preț: 479.90 lei
Preț: 452.05 lei
Preț vechi: 531.81 lei
-15% Nou
Puncte Express: 678
Preț estimativ în valută:
86.51€ • 90.99$ • 72.06£
86.51€ • 90.99$ • 72.06£
Carte tipărită la comandă
Livrare economică 03-17 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817643690
ISBN-10: 0817643699
Pagini: 168
Ilustrații: IX, 166 p.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.26 kg
Ediția:2nd ed. 1996
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
ISBN-10: 0817643699
Pagini: 168
Ilustrații: IX, 166 p.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.26 kg
Ediția:2nd ed. 1996
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Background.- Nonnegative Integral Solutions to Linear Equations.- The Face Ring of a Simplicial Complex.- Further Aspects of Face Rings.
Textul de pe ultima copertă
Some remarkable connections between commutative algebra and combinatorics have been discovered in recent years. This book provides an overview of two of the main topics in this area. The first concerns the solutions of linear equations in nonnegative integers. Applications are given to the enumeration of integer stochastic matrices (or magic squares), the volume of polytopes, combinatorial reciprocity theorems, and related results. The second topic deals with the face ring of a simplicial complex, and includes a proof of the Upper Bound Conjecture for Spheres. An introductory chapter giving background information in algebra, combinatorics and topology broadens access to this material for non-specialists.
New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors. Included in this chapter is an outline of the proof of McMullen's g-conjecture for simplicial polytopes based on toric varieties, as well as a discussion of the face rings of such special classes of simplicial complexes as shellable complexes, matroid complexes, level complexes, doubly Cohen-Macaulay complexes, balanced complexes, order complexes, flag complexes, relative complexes, and complexes with group actions. Also included is information on subcomplexes and subdivisions of simplicial complexes, and an application to spline theory.
New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors. Included in this chapter is an outline of the proof of McMullen's g-conjecture for simplicial polytopes based on toric varieties, as well as a discussion of the face rings of such special classes of simplicial complexes as shellable complexes, matroid complexes, level complexes, doubly Cohen-Macaulay complexes, balanced complexes, order complexes, flag complexes, relative complexes, and complexes with group actions. Also included is information on subcomplexes and subdivisions of simplicial complexes, and an application to spline theory.
Caracteristici
Stanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra The theory of invariants of a torus acting linearly on a polynomial ring The face ring of a simplicial complex The author develops some interesting properties of face rings with application to combinatorics