Complexes of Differential Operators: Mathematics and Its Applications, cartea 340
Autor Nikolai Tarkhanoven Limba Engleză Paperback – 29 oct 2012
Din seria Mathematics and Its Applications
- Preț: 228.74 lei
- 18% Preț: 918.48 lei
- 15% Preț: 629.85 lei
- 15% Preț: 633.31 lei
- 15% Preț: 574.68 lei
- Preț: 383.06 lei
- 18% Preț: 928.14 lei
- 15% Preț: 570.05 lei
- 5% Preț: 636.42 lei
- 15% Preț: 639.84 lei
- 15% Preț: 629.99 lei
- 15% Preț: 587.53 lei
- Preț: 383.65 lei
- 15% Preț: 633.17 lei
- Preț: 374.75 lei
- Preț: 383.26 lei
- 15% Preț: 686.07 lei
- Preț: 379.88 lei
- Preț: 378.62 lei
- 15% Preț: 568.30 lei
- 15% Preț: 635.25 lei
- 15% Preț: 570.22 lei
- 20% Preț: 577.41 lei
- Preț: 384.22 lei
- 15% Preț: 584.65 lei
- 15% Preț: 577.51 lei
- 15% Preț: 633.17 lei
- 15% Preț: 630.48 lei
- Preț: 381.05 lei
- 15% Preț: 630.48 lei
- 15% Preț: 625.05 lei
- Preț: 378.41 lei
Preț: 384.02 lei
Nou
Puncte Express: 576
Preț estimativ în valută:
73.49€ • 77.29$ • 61.22£
73.49€ • 77.29$ • 61.22£
Carte tipărită la comandă
Livrare economică 04-18 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401041447
ISBN-10: 940104144X
Pagini: 420
Ilustrații: XVIII, 396 p.
Dimensiuni: 160 x 240 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 940104144X
Pagini: 420
Ilustrații: XVIII, 396 p.
Dimensiuni: 160 x 240 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
0.0.1 Timeliness.- 0.0.2 Directions.- 0.0.3 Purpose.- 0.0.4 Methods.- 0.0.5 Approach.- 0.0.6 Results.- 0.0.7 Authorship.- List of Main Notations.- 1 Resolution of Differential Operators.- 1.1 Differential Complexes and Their Cohomology.- 1.2 The Hilbert Resolution of a Differential Operator with Constant Coefficients.- 1.3 The Spencer Resolution of a Formally Integrable Differential Operator.- 1.4 Tensor products of differential complexes and Künneth’s formula.- 1.5 Cochain mappings of differential complexes.- 2 Parametrices and Fundamental Solutions of Differential Complexes.- 2.1 Parametrices of Differential Complexes.- 2.2 Hodge Theory for Elliptic Complexes on Compact Manifolds.- 2.3 Fundamental Solutions of Differential Complexes.- 2.4 Green Operators for Differential Operators and the Homotopy Formula on Manifolds with Boundary.- 2.5 The Most Immediate Corollaries and Examples.- 3 Sokhotskii-Plemelj Formulas for Elliptic Complexes.- 3.1 Formally Non-characteristic Hypersurfaces for Differential Complexes. The Tangential Complex.- 3.2 Sokhotskii-Plemelj Formulas for Elliptic Complexes of First Order Differential Operators.- 3.3 Generalization of the Sokhotskii-Plemelj Formulas to the Case of Arbitrary Elliptic Complexes.- 3.4 Integral Formulas for Elliptic Complexes. Morera’s Theorem.- 3.5 Multiplication of Currents via Their Harmonic Representations.- 4 Boundary Problems for Differential Complexes.- 4.1 The Neumann-Spencer Problem.- 4.2 The L2-Cohomologies of Differential Complexes and the Bergman Projector.- 4.3 The Mayer-Vietoris sequence.- 4.4 The Cauchy problem for cohomology classes of differential complexes.- 4.5 The Kernel Approach to Solving the Equation Pu = f.- 5 Duality Theory for Cohomologies of Differential Complexes.- 5.1 The Poincaré Dualityand the Alexander-Pontryagin Duality.- 5.2 The Weil Homomorphism.- 5.3 Integral Formulas Connected by the Weil Homomorphism.- 5.4 Grothendieck’s Theorem on Cohomology Classes Regular at Infinity.- 5.5 Grothendieck Duality for Elliptic Complexes.- 6 The Atiyah-Bott-Lefschetz Theorem on Fixed Points for Elliptic Complexes.- 6.1 The Argument Principle for Elliptic Complexes.- 6.2 An Integral Formula for the Lefschetz Number.- 6.3 The Atiyah-Bott Formula for Simple Fixed Points.- 6.4 Isolated Components of the Set of Fixed Points.- 6.5 Some Examples for the Classical Complexes.- Name Index.- Index of Notation.