Multidimensional Systems Theory: Progress, Directions and Open Problems in Multidimensional Systems: Mathematics and Its Applications, cartea 16
Editat de N.K. Boseen Limba Engleză Hardback – 30 iun 1985
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 367.69 lei 38-44 zile | |
SPRINGER NETHERLANDS – 30 noi 2001 | 367.69 lei 38-44 zile | |
Hardback (1) | 383.65 lei 43-57 zile | |
SPRINGER NETHERLANDS – 30 iun 1985 | 383.65 lei 43-57 zile |
Din seria Mathematics and Its Applications
- Preț: 228.74 lei
- 18% Preț: 918.48 lei
- 15% Preț: 629.85 lei
- 15% Preț: 633.31 lei
- 15% Preț: 574.68 lei
- Preț: 383.06 lei
- 18% Preț: 928.14 lei
- 15% Preț: 570.05 lei
- 5% Preț: 636.42 lei
- 15% Preț: 639.84 lei
- 15% Preț: 629.99 lei
- 15% Preț: 587.53 lei
- 15% Preț: 633.17 lei
- Preț: 374.75 lei
- Preț: 383.26 lei
- 15% Preț: 686.07 lei
- Preț: 379.88 lei
- Preț: 378.62 lei
- 15% Preț: 568.30 lei
- 15% Preț: 635.25 lei
- 15% Preț: 570.22 lei
- 20% Preț: 577.41 lei
- Preț: 384.22 lei
- 15% Preț: 584.65 lei
- 15% Preț: 577.51 lei
- 15% Preț: 633.17 lei
- 15% Preț: 630.48 lei
- Preț: 381.05 lei
- 15% Preț: 630.48 lei
- 15% Preț: 625.05 lei
- Preț: 378.41 lei
Preț: 383.65 lei
Nou
Puncte Express: 575
Preț estimativ în valută:
73.43€ • 76.53$ • 61.13£
73.43€ • 76.53$ • 61.13£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789027717641
ISBN-10: 9027717648
Pagini: 284
Ilustrații: XV, 264 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.58 kg
Ediția:1985
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9027717648
Pagini: 284
Ilustrații: XV, 264 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.58 kg
Ediția:1985
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Trends in Multidimensional Systems Theory.- 1.1 Introduction.- 1.2 Multidimensional Systems Stability.- 1.3 Multivariate Realization Theory.- 1.4 n—D Problem of Moments and Its Applications in Multidimensional Systems Theory.- 1.5 Role of Irreducible Polynomials in Multidimensional Systems Theory.- 1.6 Hilbert Transform and Spectral Factorization.- 1.7 Conclusions.- References.- 2. Multivariate Rational Approximants of the Padé-Type in Systems Theory.- 2.1 Introduction and Motivation.- 2.2 Multivariate Padé-Type Approximants (Scalar Case).- 2.3 Padé-Type Matrix Approximants.- 2.4 Conclusions.- References.- 3. Causal and Weakly Causal 2–D Filters with Applications in Stabilization.- 3.1 Scalar 2–D Input/Output Systems.- 3.2 Stability.- 3.3 Structural Stability.- 3.4 Multi-Input/Multi-Output Systems.- 3.5 Stabilization of Scalar Feedback Systems.- 3.6 Characterization of Stabilizers for Scalar Systems.- 3.7 Stabilization of Strictly Causal Transfer Matrices.- 3.8 Characterization of Stabilizers for MIMO Systems.- 3.9 Stabilization of Weakly Causal Systems.- 3.10 Stabilization of MIMO Weakly Causal Systems.- 3.11 Conclusions.- References.- 4. Stabilization of Linear Spatially-Distributed Continuous- Time and Discrete- Time Systems.- 4.1 Introduction.- 4.2 The State Representation and Input/Output Description.- 4.3 Discretizations in Time.- 4.4 Representation in Terms of a Family of Finite-Dimensional Systems.- 4.5 Stability.- 4.6 Reachability and Stabilizability.- 4.7 The Riccati Equation and Stabilizability.- 4.8 Stabilization by Dynamic Output Feedback.- 4.9 Application to Tracking.- Acknowledgement.- References.- 5. Linear Shift-Variant Multidimensional Systems.- 5.1 Introduction.- 5.2 2-D Quarter Plane State-Space Model.- 5.3 k-D State-Space Model.- 5.4State-Space Model for the Inverse System.- 5.5 Examples of Applications.- 5.6 Conclusions.- References.- 6. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory.- 6.1 Introduction.- 6.2 Gröbner Bases.- 6.3 Algorithmic Construction of Gröbner Bases.- 6.4 An Improved Version of the Algorithm.- 6.5 Application: Canonical Simplification, Decision of Ideal Congruence and Membership, Computation in Residue Class Rings.- 6.6 Application: Solvability and Exact Solution of Systems of Algebraic Equations.- 6.7 Application: Solution of Linear Homogeneous Equations with Polynomial Coefficients.- 6.8 Gröbner Bases for Polynomial Ideals over the Integers.- 6.9 Other Applications.- 6.10 Specializations, Generalizations, Implementations, Complexity.- Acknowledgement.- References.- 7. The Equation Ax = b Over the Ring C [z, w].- 7.1 Introduction.- 7.2 Sufficient Condition for Solution.- Appendix A: Zero-Dimensional Polynomial Ideals.- References.- 8. Open Problems.