Mathematical Modelling in Biomedicine: Optimal Control of Biomedical Systems: Mathematics and Its Applications, cartea 23
Autor Y. Cherruaulten Limba Engleză Hardback – 28 feb 1986
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 387.20 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 21 apr 2014 | 387.20 lei 6-8 săpt. | |
Hardback (1) | 395.47 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 28 feb 1986 | 395.47 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- Preț: 228.74 lei
- 18% Preț: 945.62 lei
- 15% Preț: 648.42 lei
- 15% Preț: 651.99 lei
- 15% Preț: 591.61 lei
- Preț: 394.29 lei
- 18% Preț: 955.56 lei
- 15% Preț: 586.85 lei
- 5% Preț: 655.17 lei
- 15% Preț: 658.70 lei
- 15% Preț: 648.56 lei
- 15% Preț: 604.84 lei
- Preț: 394.87 lei
- 15% Preț: 651.84 lei
- Preț: 374.76 lei
- Preț: 394.51 lei
- 15% Preț: 706.30 lei
- Preț: 391.02 lei
- Preț: 389.70 lei
- 15% Preț: 585.04 lei
- 15% Preț: 653.98 lei
- 15% Preț: 587.02 lei
- 20% Preț: 577.42 lei
- 15% Preț: 601.88 lei
- 15% Preț: 594.53 lei
- 15% Preț: 651.84 lei
- 15% Preț: 649.06 lei
- Preț: 392.21 lei
- 15% Preț: 649.06 lei
- 15% Preț: 643.48 lei
- Preț: 389.49 lei
Preț: 395.47 lei
Nou
Puncte Express: 593
Preț estimativ în valută:
75.69€ • 78.00$ • 63.90£
75.69€ • 78.00$ • 63.90£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789027721495
ISBN-10: 9027721491
Pagini: 280
Ilustrații: XVIII, 258 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.59 kg
Ediția:1986
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9027721491
Pagini: 280
Ilustrații: XVIII, 258 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.59 kg
Ediția:1986
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
0 Introduction.- 1 General Remarks on Modelling.- 1.1 Definitions.- 1. 2 The main techniques for modeling.- 1.3 Difficulties in modeling.- 2 Identification and Control in Linear Compartmental Analysis.- 2.1 The identification problem.- 2.2 The uniqueness problem.- 2.3 Numerical methods for identification.- 2.4 About the non-linear case.- 2.5 Optimization techniques.- 3 Optimal Control in Compartmental Analysis.- 3.1 General considerations.- 3.2 A first explicit approach.- 3.3 The general solution.- 3.4 Numerical method.- 3.5 Optimal control in non-linear cases.- 4 Relations Between dose and Effect.- 4.1 General considerations.- 4.2 The non-linear approach.- 4.3 Simple functional model.- 4.4 Optimal therapeutics.- 4.5 Numerical results.- 4.6 Non-linear compartment approach.- 4.7 Optimal therapeutics using a linear approach.- 4.8 Optimal control in a compartmental model with time lag.- 5 General Modelling in Medicine.- 5.1 The problem and the corresponding model.- 5.2 The identification problem.- 5.3 A simple method for defining optimal therapeutics.- 5.4 The Pontryagin method.- 5.5 A simplified technique giving a sub-optimum.- 5.6 A naive but useful method.- 6 Blood Glucose Regulation.- 6.1 Identification of parameters in dogs.- 6.2 The human case.- 6.3 Optimal control for optimal therapeutics.- 6.4 Optimal control problem involving several criteria.- 7 Integral Equations in Biomedicine.- 7.1 Compartmental analysis.- 7.2 Integral equations from biomechanics.- 7.3 Other applications of integral equations.- 8 Numerical Solution of Integral Equations.- 8.1 Linear integral equations.- 8.2 Numerical techniques for non-linear integral equations.- 8.3 Identification and optimal control using integral equations.- 8.4 Optimal control and non-linear integral equations.- 9 ProblemsRelated to Partial Differential Equations.- 9.1 General remarks.- 9.2 Numerical resolution of partial differential equations.- 9.3 Identification in partial differential equations.- 9.4 Optimal control with partial differential equations.- 9.5 Other approaches for optimal control.- 9.6 Other partial differential equations.- 10 Optimality in Human Physiology.- 10.1 General remarks.- 10.2 A mathematical model for thermo-regulation.- 10.3 Optimization of pulmonary mechanics.- 10.4 Conclusions.- 11 Errors in Modelling.- 11.1 Compartmental modeling.- 11.2 Sensitivity analysis.- 12 Open Problems in Biomathematics.- 12.1 Biological systems with internal delay.- 12.2 Biological systems involving retroaction.- 12.3 Action of two (or more) drugs in the human organism.- 12.4 Numerical techniques for global optimization.- 12.5 Biofeedback and systems theory.- 12.6 Optimization of industrial processes.- 12.7 Optimality in physiology.- 13 CONCLUSIONS.- Appendix — The Alienor program.- References.