Cantitate/Preț
Produs

Complexity and Real Computation

Autor Lenore Blum, Felipe Cucker, Michael Shub, Steve Smale
en Limba Engleză Hardback – 30 oct 1997
Computational complexity theory provides a framework for understanding the cost of solving computational problems, as measured by the requirement for resources such as time and space. The objects of study are algorithms defined within a formal model of computation. Upper bounds on the computational complexity of a problem are usually derived by constructing and analyzing specific algorithms. Meaningful lower bounds on computational complexity are harder to come by, and are not available for most problems of interest. The dominant approach in complexity theory is to consider algorithms as oper­ ating on finite strings of symbols from a finite alphabet. Such strings may represent various discrete objects such as integers or algebraic expressions, but cannot rep­ resent real or complex numbers, unless the numbers are rounded to approximate values from a discrete set. A major concern of the theory is the number of com­ putation steps required to solve a problem, as a function of the length of the input string.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 34115 lei  6-8 săpt.
  Springer – 10 oct 2012 34115 lei  6-8 săpt.
Hardback (1) 65387 lei  6-8 săpt.
  Springer – 30 oct 1997 65387 lei  6-8 săpt.

Preț: 65387 lei

Preț vechi: 81733 lei
-20% Nou

Puncte Express: 981

Preț estimativ în valută:
12514 12965$ 10443£

Carte tipărită la comandă

Livrare economică 21 martie-04 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387982816
ISBN-10: 0387982817
Pagini: 453
Ilustrații: XVI, 453 p. With online files/update.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.8 kg
Ediția:1998
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Introduction.- 2 Definitions and First Properties of Computation.- 3 Computation over a Ring.- 4 Decision Problems and Complexity over a Ring.- 5 The Class NP and NP-Complete Problems.- 6 Integer Machines.- 7 Algebraic Settings for the Problem “P ? NP?”.- 8 Newton’s Method.- 9 Fundamental Theorem of Algebra: Complexity Aspects.- 10 Bézout’s Theorem.- 11 Condition Numbers and the Loss of Precision of Linear Equations.- 12 The Condition Number for Nonlinear Problems.- 13 The Condition Number in ?(H(d).- 14 Complexity and the Condition Number.- 15 Linear Programming.- 16 Deterministic Lower Bounds.- 17 Probabilistic Machines.- 18 Parallel Computations.- 19 Some Separations of Complexity Classes.- 20 Weak Machines.- 21 Additive Machines.- 22 Nonuniform Complexity Classes.- 23 Descriptive Complexity.- References.

Caracteristici

Unique work on this core topic * Written by internationally recognised specialists in mathematics and computing * Provides the basics for numerous practical industrial applications, e.g. AI, robotics, digital cash