Compressed Sensing & Sparse Filtering: Signals and Communication Technology
Editat de Avishy Y. Carmi, Lyudmila Mihaylova, Simon J. Godsillen Limba Engleză Hardback – 25 sep 2013
Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations thanconventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.
This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 935.58 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 27 aug 2016 | 935.58 lei 6-8 săpt. | |
Hardback (1) | 941.62 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 25 sep 2013 | 941.62 lei 6-8 săpt. |
Din seria Signals and Communication Technology
- 20% Preț: 338.91 lei
- 18% Preț: 1528.13 lei
- 15% Preț: 574.08 lei
- 15% Preț: 573.44 lei
- 18% Preț: 829.95 lei
- 17% Preț: 361.80 lei
- Preț: 385.44 lei
- 20% Preț: 1002.72 lei
- 15% Preț: 628.74 lei
- 18% Preț: 933.59 lei
- 18% Preț: 1547.60 lei
- 18% Preț: 795.19 lei
- 18% Preț: 713.24 lei
- 18% Preț: 877.91 lei
- 18% Preț: 887.19 lei
- 15% Preț: 633.36 lei
- 20% Preț: 649.07 lei
- 15% Preț: 628.24 lei
- 18% Preț: 1810.31 lei
- 18% Preț: 927.07 lei
- 18% Preț: 1215.93 lei
- 20% Preț: 636.28 lei
- 20% Preț: 973.14 lei
- 18% Preț: 921.52 lei
- 18% Preț: 926.46 lei
- 18% Preț: 1361.12 lei
- 20% Preț: 983.16 lei
- 18% Preț: 934.19 lei
- 20% Preț: 980.88 lei
- 18% Preț: 1386.64 lei
- 15% Preț: 640.11 lei
- 15% Preț: 632.55 lei
- 15% Preț: 624.39 lei
- 18% Preț: 929.55 lei
- 18% Preț: 819.43 lei
- 18% Preț: 1205.86 lei
- 15% Preț: 622.17 lei
- 15% Preț: 626.33 lei
- 15% Preț: 633.23 lei
- 15% Preț: 626.33 lei
- 15% Preț: 697.96 lei
- 20% Preț: 985.72 lei
- 18% Preț: 950.89 lei
- 15% Preț: 687.38 lei
Preț: 941.62 lei
Preț vechi: 1148.32 lei
-18% Nou
Puncte Express: 1412
Preț estimativ în valută:
180.26€ • 187.38$ • 149.46£
180.26€ • 187.38$ • 149.46£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642383977
ISBN-10: 3642383971
Pagini: 516
Ilustrații: XII, 502 p. 135 illus.
Dimensiuni: 155 x 235 x 33 mm
Greutate: 0.89 kg
Ediția:2014
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Signals and Communication Technology
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642383971
Pagini: 516
Ilustrații: XII, 502 p. 135 illus.
Dimensiuni: 155 x 235 x 33 mm
Greutate: 0.89 kg
Ediția:2014
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Signals and Communication Technology
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Introduction to Compressed Sensing and Sparse Filtering.- The Geometry of Compressed Sensing.- Sparse Signal Recovery with Exponential-Family Noise.- Nuclear Norm Optimization and its Application to Observation Model Specification.- Nonnegative Tensor Decomposition.- Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks.- Sparse Nonlinear MIMO Filtering and Identification.- Optimization Viewpoint on Kalman Smoothing with Applications to Robust and Sparse Estimation.- Compressive System Identification.- Distributed Approximation and Tracking using Selective Gossip.- Recursive Reconstruction of Sparse Signal Sequences.- Estimation of Time-Varying Sparse Signals in Sensor Networks.- Sparsity and Compressed Sensing in Mono-static and Multi-static Radar Imaging.- Structured Sparse Bayesian Modelling for Audio Restoration.- Sparse Representations for Speech Recognition.
Recenzii
From the reviews:
“This book reports on the application of compressed sensing. … This book presents cutting-edge research on one of the newest signal processing disciplines. It should be of great value to research scientists in related fields, and it could help research and development engineers evaluate the impact these new methods could have in their work.” (Vladimir Botchev, Computing Reviews, February, 2014)
“This book reports on the application of compressed sensing. … This book presents cutting-edge research on one of the newest signal processing disciplines. It should be of great value to research scientists in related fields, and it could help research and development engineers evaluate the impact these new methods could have in their work.” (Vladimir Botchev, Computing Reviews, February, 2014)
Textul de pe ultima copertă
This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.
Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations thanconventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.
This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.
Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations thanconventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.
This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.
Caracteristici
Presents fundamental concepts, methods and algorithms able to cope with undersampled data Introduces compressive sampling, called also compressed sensing. Written by well-known experts in the field Includes supplementary material: sn.pub/extras