Reconstruction, Identification and Implementation Methods for Spiking Neural Circuits: Springer Theses
Autor Dorian Florescuen Limba Engleză Paperback – 25 iul 2018
A new mathematical formulation is proposed for the encoding and decoding of analog signals using integrate-and-fire neuron models. Based on this formulation, a novel algorithm, significantly faster than the state-of-the-art method, is proposed for reconstructing the input of the neuron.
Two new identification methods are proposed for neural circuits comprising a filter in series with a spiking neuron model. These methods reduce the number of assumptions made by the state-of-the-art identification framework, allowing for a wider range of models of sensory processing circuits to be inferred directly from input-output observations.
A third contribution is an algorithm that computes the spike time sequence generated by an integrate-and-fire neuron model in response to the output of alinear filter, given the input of the filter encoded with the same neuron model.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 620.72 lei 43-57 zile | |
Springer International Publishing – 25 iul 2018 | 620.72 lei 43-57 zile | |
Hardback (1) | 626.80 lei 43-57 zile | |
Springer International Publishing – 3 mai 2017 | 626.80 lei 43-57 zile |
Din seria Springer Theses
- 5% Preț: 1130.67 lei
- Preț: 382.04 lei
- 15% Preț: 633.86 lei
- 18% Preț: 1195.68 lei
- Preț: 391.27 lei
- 18% Preț: 977.66 lei
- 18% Preț: 921.98 lei
- Preț: 544.53 lei
- 15% Preț: 630.15 lei
- 15% Preț: 629.70 lei
- 15% Preț: 626.33 lei
- 20% Preț: 558.82 lei
- 18% Preț: 924.30 lei
- 18% Preț: 1093.64 lei
- 15% Preț: 627.11 lei
- 15% Preț: 627.11 lei
- Preț: 276.68 lei
- 15% Preț: 623.58 lei
- 18% Preț: 873.12 lei
- 15% Preț: 627.93 lei
- Preț: 381.87 lei
- 20% Preț: 563.89 lei
- Preț: 385.44 lei
- 15% Preț: 625.02 lei
- 15% Preț: 628.89 lei
- 18% Preț: 1089.74 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1081.25 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1201.06 lei
- 18% Preț: 925.84 lei
- 18% Preț: 925.06 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1204.16 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1192.58 lei
- 15% Preț: 623.93 lei
- 18% Preț: 980.60 lei
- 15% Preț: 623.11 lei
- 15% Preț: 627.93 lei
- Preț: 379.42 lei
- 18% Preț: 979.20 lei
- Preț: 377.51 lei
- Preț: 377.51 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1088.21 lei
- Preț: 379.22 lei
- 15% Preț: 624.26 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 620.72 lei
Preț vechi: 730.25 lei
-15% Nou
Puncte Express: 931
Preț estimativ în valută:
118.79€ • 123.40$ • 98.67£
118.79€ • 123.40$ • 98.67£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319860725
ISBN-10: 3319860720
Ilustrații: XIV, 139 p. 42 illus., 27 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.23 kg
Ediția:Softcover reprint of the original 1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3319860720
Ilustrații: XIV, 139 p. 42 illus., 27 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.23 kg
Ediția:Softcover reprint of the original 1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Cuprins
Nomenclature.- Acronyms.- 1 Introduction.- 2 Time Encoding and Decoding in Bandlimited and Shift-Invariant Spaces.- 3 A Novel Framework for Reconstructing Bandlimited Signals Encoded by Integrate and-Fire Neurons.- 4 A Novel Reconstruction Framework in Shift-Invariant Spaces for Signals Encoded with Integrate-and-Fire Neurons.- 5 A New Approach to the Identification of Sensory Processing Circuits Based on Spiking Neuron Data.- 6 A New Method for Implementing Linear Filters in the Spike Domain.- 7 Conclusions and Future Work.- Bibliography.
Notă biografică
Dr Dorian Florescu is currently a Postdoctoral Research Fellow in the Department of Automatic Control and Systems Engineering at the University of Sheffield, working on the ‘Digital Fruit Fly Brain’ project, funded jointly by BBSRC and the National Science Foundation.
He was awarded the BEng degree in Systems Engineering from the Technical University of Iasi, Romania, in 2011 and the PhD degree in Automatic Control & Systems Engineering from the University of Sheffield
He was awarded the BEng degree in Systems Engineering from the Technical University of Iasi, Romania, in 2011 and the PhD degree in Automatic Control & Systems Engineering from the University of Sheffield
Textul de pe ultima copertă
This work is motivated by the ongoing open question of how information in the outside world is represented and processed by the brain. Consequently, several novel methods are developed.
A new mathematical formulation is proposed for the encoding and decoding of analog signals using integrate-and-fire neuron models. Based on this formulation, a novel algorithm, significantly faster than the state-of-the-art method, is proposed for reconstructing the input of the neuron.
Two new identification methods are proposed for neural circuits comprising a filter in series with a spiking neuron model. These methods reduce the number of assumptions made by the state-of-the-art identification framework, allowing for a wider range of models of sensory processing circuits to be inferred directly from input-output observations.
A third contribution is an algorithm that computes the spike time sequence generated by an integrate-and-fire neuron model in response to the output of alinear filter, given the input of the filter encoded with the same neuron model.
A new mathematical formulation is proposed for the encoding and decoding of analog signals using integrate-and-fire neuron models. Based on this formulation, a novel algorithm, significantly faster than the state-of-the-art method, is proposed for reconstructing the input of the neuron.
Two new identification methods are proposed for neural circuits comprising a filter in series with a spiking neuron model. These methods reduce the number of assumptions made by the state-of-the-art identification framework, allowing for a wider range of models of sensory processing circuits to be inferred directly from input-output observations.
A third contribution is an algorithm that computes the spike time sequence generated by an integrate-and-fire neuron model in response to the output of alinear filter, given the input of the filter encoded with the same neuron model.
Caracteristici
Nominated as an outstanding Ph.D. thesis by the University of Sheffield Reformulates, for the first time, the encoding performed by the integrate-and-fire neuron model as a problem of uniform sampling of an auxiliary function on a set of input independent time points Proposes two methodologies for identifying [Nonlinear Filter]-[Ideal IF] and [Linear Filter]-[Leaky IF] circuits Developes for the first time, a direct representation between the input and output of a linear filter, both encoded with an integrate-and-fire neuron model Includes supplementary material: sn.pub/extras Includes supplementary material: sn.pub/extras