Computational Intelligence for Optimization
Autor Nirwan Ansari, Edwin Houen Limba Engleză Paperback – 5 noi 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 608.74 lei 6-8 săpt. | |
Springer Us – 5 noi 2012 | 608.74 lei 6-8 săpt. | |
Hardback (1) | 615.15 lei 6-8 săpt. | |
Springer Us – 31 dec 1996 | 615.15 lei 6-8 săpt. |
Preț: 608.74 lei
Preț vechi: 760.92 lei
-20% Nou
Puncte Express: 913
Preț estimativ în valută:
116.53€ • 126.95$ • 97.76£
116.53€ • 126.95$ • 97.76£
Carte tipărită la comandă
Livrare economică 18 decembrie 24 - 01 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461379072
ISBN-10: 1461379075
Pagini: 240
Ilustrații: XII, 225 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 1461379075
Pagini: 240
Ilustrații: XII, 225 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Introduction.- 1.1 Computational Complexity.- 1.2 Survey of Optimization Techniques.- 1.3 Organization of the Book.- 1.4 Exploratory Problems.- 2 Heuristic Search Methods.- 2.1 Graph Search Algorithm.- 2.2 Heuristic Functions.- 2.3 A* Search Algorithm.- 2.4 Exploratory Problems.- 3 Hopfield Neural Networks.- 3.1 Discrete Hopfield Net.- 3.2 Continuous Hopfield Net.- 3.3 Content-Addressable Memory.- 3.4 Combinatorial Optimization.- 3.5 Exploratory Problems.- 4 Simulated Annealing and Stochastic Machines.- 4.1 Statistical Mechanics and The Metropolis Algorithm.- 4.2 Simulated Annealing.- 4.3 Stochastic Machines.- 4.4 Exploratory Problems.- 5 Mean Field Annealing.- 5.1 Mean Field Approximation.- 5.2 Saddle-Point Expansion.- 5.3 Stability.- 5.4 Parameters of the Mean Field Net.- 5.5 Graph Bipartition — An Example.- 5.6 Exploratory Problems.- 6 Genetic Algorithms.- 6.1 Simple genetic Operators.- 6.2 An Illustrative Example.- 6.3 Why Do Genetic Algorithms Work?.- 6.4 Other Genetic Operators.- 6.5 Exploratory Problems.- 7 The Traveling Salesman Problem.- 7.1 Why Does the Hopfield Net Frequently Fail to Produce Valid Solutions?.- 7.2 Solving the TSP with Heuristic Search Algorithms.- 7.3 Solving the TSP with Simulated Annealing.- 7.4 Solving the TSP with Genetic Algorithms.- 7.5 An Overview of Eigenvalue Analysis.- 7.6 Derivation of ?1 of the Connection Matrix.- 7.7 Exploratory Problems.- 8 Telecommunications.- 8.1 Satellite Broadcast Scheduling.- 8.2 Maximizing Data Throughput in An Integrated TDMA Communications System.- 8.3 Summary.- 8.4 Exploratory Problems.- 9 Point Pattern Matching.- 9.1 Problem Formulation.- 9.2 The Simulated Annealing Framework.- 9.3 Evolutionary Programming.- 9.4 Summary.- 9.5 Exploratory Problems.- 10 Multiprocessor Scheduling.- 10.1 Model andDefinitions.- 10.2 Mean Field Annealing.- 10.3 Genetic Algorithm.- 10.4 Exploratory Problems.- 11 Job Shop Scheduling.- 11.1 Types of Schedules.- 11.2 A Genetic Algorithm for JSP.- 11.3 Simulation Results.- 11.4 Exploratory Problems.- References.