Cantitate/Preț
Produs

Computational Learning Theory: 15th Annual Conference on Computational Learning Theory, COLT 2002, Sydney, Australia, July 8-10, 2002. Proceedings: Lecture Notes in Computer Science, cartea 2375

Editat de Jyrki Kivinen, Robert H. Sloan
en Limba Engleză Paperback – 26 iun 2002

Din seria Lecture Notes in Computer Science

Preț: 32594 lei

Preț vechi: 40742 lei
-20% Nou

Puncte Express: 489

Preț estimativ în valută:
6238 6581$ 5199£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540438366
ISBN-10: 354043836X
Pagini: 424
Ilustrații: XII, 412 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:2002
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Statistical Learning Theory.- Agnostic Learning Nonconvex Function Classes.- Entropy, Combinatorial Dimensions and Random Averages.- Geometric Parameters of Kernel Machines.- Localized Rademacher Complexities.- Some Local Measures of Complexity of Convex Hulls and Generalization Bounds.- Online Learning.- Path Kernels and Multiplicative Updates.- Predictive Complexity and Information.- Mixability and the Existence of Weak Complexities.- A Second-Order Perceptron Algorithm.- Tracking Linear-Threshold Concepts with Winnow.- Inductive Inference.- Learning Tree Languages from Text.- Polynomial Time Inductive Inference of Ordered Tree Patterns with Internal Structured Variables from Positive Data.- Inferring Deterministic Linear Languages.- Merging Uniform Inductive Learners.- The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions.- PAC Learning.- New Lower Bounds for Statistical Query Learning.- Exploring Learnability between Exact and PAC.- PAC Bounds for Multi-armed Bandit and Markov Decision Processes.- Bounds for the Minimum Disagreement Problem with Applications to Learning Theory.- On the Proper Learning of Axis Parallel Concepts.- Boosting.- A Consistent Strategy for Boosting Algorithms.- The Consistency of Greedy Algorithms for Classification.- Maximizing the Margin with Boosting.- Other Learning Paradigms.- Performance Guarantees for Hierarchical Clustering.- Self-Optimizing and Pareto-Optimal Policies in General Environments Based on Bayes-Mixtures.- Prediction and Dimension.- Invited Talk.- Learning the Internet.

Caracteristici

Includes supplementary material: sn.pub/extras