Data Mining for Biomarker Discovery: Springer Optimization and Its Applications, cartea 65
Editat de Panos M. Pardalos, Petros Xanthopoulos, Michalis Zervakisen Limba Engleză Paperback – 12 apr 2014
This volume is a collection of state-of-the-art research into the application of data mining to the discovery and analysis of new biomarkers. Presenting new results, models and algorithms, the included contributions focus on biomarker data integration, information retrieval methods, and statistical machine learning techniques.
This volume is intended for students, and researchers in bioinformatics, proteomics, and genomics, as well engineers and applied scientists interested in the interdisciplinary application of data mining techniques.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 605.54 lei 6-8 săpt. | |
Springer – 12 apr 2014 | 605.54 lei 6-8 săpt. | |
Hardback (1) | 609.40 lei 6-8 săpt. | |
Springer – 10 feb 2012 | 609.40 lei 6-8 săpt. |
Din seria Springer Optimization and Its Applications
- 15% Preț: 608.12 lei
- 15% Preț: 629.54 lei
- 18% Preț: 910.70 lei
- 17% Preț: 360.79 lei
- 13% Preț: 461.35 lei
- Preț: 339.21 lei
- 18% Preț: 746.30 lei
- Preț: 370.05 lei
- 18% Preț: 1073.32 lei
- 15% Preț: 612.34 lei
- 15% Preț: 613.25 lei
- Preț: 379.47 lei
- Preț: 359.95 lei
- Preț: 383.90 lei
- Preț: 388.48 lei
- Preț: 517.50 lei
- 15% Preț: 613.25 lei
- Preț: 369.79 lei
- 15% Preț: 615.56 lei
- 24% Preț: 611.55 lei
- 18% Preț: 921.18 lei
- 20% Preț: 585.91 lei
- 15% Preț: 672.60 lei
- 18% Preț: 703.38 lei
- 15% Preț: 623.49 lei
- 15% Preț: 624.25 lei
- 18% Preț: 705.80 lei
- 15% Preț: 668.09 lei
- 20% Preț: 581.07 lei
Preț: 605.54 lei
Preț vechi: 712.39 lei
-15% Nou
Puncte Express: 908
Preț estimativ în valută:
115.93€ • 125.61$ • 96.81£
115.93€ • 125.61$ • 96.81£
Carte tipărită la comandă
Livrare economică 12-26 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781489996435
ISBN-10: 1489996435
Pagini: 260
Ilustrații: XIV, 246 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.39 kg
Ediția:2012
Editura: Springer
Colecția Springer
Seria Springer Optimization and Its Applications
Locul publicării:New York, NY, United States
ISBN-10: 1489996435
Pagini: 260
Ilustrații: XIV, 246 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.39 kg
Ediția:2012
Editura: Springer
Colecția Springer
Seria Springer Optimization and Its Applications
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Preface.- 1. Data Mining Strategies Applied in Brain Injury Models (S. Mondello, F. Kobeissy, I. Fingers, Z. Zhang, R.L. Hayes, K.K.W. Wang).- Application of Decomposition Methods in the Filtering of Event Related Potentials (K. Michalopoulos, V. Iordanidou, M. Zervakis).- 3. EEG Features as Biomarkers for Discrimination of Pre-ictal states (A. Tsimpiris, D. Kugiumtzis).- 4. Using Relative Power Asymmetry as a Biomarker for Classifying Psychogenic Non-epileptic Seizure and Complex Partial Seizure Patients (J.H. Chien, D.-S. Shiau, J.C. Sackellares, J.J. Halford, K.M. Kelly, P.M. Pardalos).- 5. Classification of Tree and Network Topology Structures in Medical Images (A. Skoura, V. Megalooikonomou, A. Diamantopolous, G.C. Kagadis, D. Karnabatidis).- 6. A Framework for Multi-Modal Imagin Biomarker Extraction with Application to Brain MRI (K. Maria, V. Sakkalis, N. Graf).- 7. A Statistical Diagnostic Decision Support Tool Using Magnetic Resonance Spectroscopy Data (E. Tsolaki, E. Kousi, E. Kapsalaki, I. Dimou, K. Theodorou, G. C. Manikis, C. Kappas, I. Tsougos).- 8. Data Mining for Cancer Biomarkers with Raman Spectroscopy (M.B.Fenn, V. Pappu).- 9. Nonlinear Recognition Methods for Oncological Pathologies (G. Patrizi, V. Pietropaolo, A. Carbone, R. De Leone, L. Di Giacomo, V. Losaco, G. Patrizi).- 10. Studying Connectivity Properties in Human Protein Interation Network in Cancer Pathway (V. Tomaino, A. Arulselvan, P. Veltri, P.M. Pardalos).- 11. Modeling of Oral Cancer Progression Using Dynamic Bayesian Networks (K.P. Exarchos, G. Rigas, Y. Golestsis, D.I. Fotiadis).- 12. Neuromuscular Alterations of Upper Airway Muscles in Patients with OSAS Radiological and Histopathological Findings (P. Drakatos, D. Lykouras, F. Sampsonas, K. Karkoulias, K. Spiropoulos).- 13. Data Mining System Applied to Population Databases for Studies on Lung Cancer (J. Pérez, F. Henriques, R. Santaolaya, O. Fragoso, A. Mexicano).
Textul de pe ultima copertă
Data Mining for Biomarker Discovery is designed to motivate collaboration and discussion among various disciplines and will be of interest to students and researchers in engineering, computer science, applied mathematics, medicine, and anyone interested in the interdisciplinary application of data mining techniques. Biomarker discovery is an important area of biomedical research that can lead to significant breakthroughs in disease analysis and targeted therapy. Moreover, the discovery and management of new biomarkers is a challenging and attractive problem in the emerging field of biomedical informatics.
This volume is a collection of state-of-the-art research from select participants of the “International Conference on Biomedical Data and Knowledge Mining: Towards Biomarker Discovery,” held July 7-9, 2010 in Chania, Greece. Contributions focus on biomarker data integration, information retrieval methods, and statistical machine learning techniques, all presented with new results, models, and algorithms.
This volume is a collection of state-of-the-art research from select participants of the “International Conference on Biomedical Data and Knowledge Mining: Towards Biomarker Discovery,” held July 7-9, 2010 in Chania, Greece. Contributions focus on biomarker data integration, information retrieval methods, and statistical machine learning techniques, all presented with new results, models, and algorithms.
Caracteristici
Presents the most challenging problems in biomarker discovery together with the most prominent methodological approaches for developing their effective solution Offers the collaborative perspectives of distinguished researchers in the fields of biomedicine, biochemistry, data mining and machine learning Introduces new spectral clustering, and hierarchical clustering algorithms specifically crafted for use in a large bioinformatics database