Numerical Optimization with Computational Errors: Springer Optimization and Its Applications, cartea 108
Autor Alexander J. Zaslavskien Limba Engleză Hardback – 3 mai 2016
This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s method.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 535.75 lei 38-44 zile | |
Springer International Publishing – 27 mai 2018 | 535.75 lei 38-44 zile | |
Hardback (1) | 623.61 lei 22-36 zile | |
Springer International Publishing – 3 mai 2016 | 623.61 lei 22-36 zile |
Din seria Springer Optimization and Its Applications
- 15% Preț: 645.58 lei
- 14% Preț: 979.50 lei
- 17% Preț: 360.79 lei
- 13% Preț: 461.35 lei
- Preț: 339.21 lei
- 18% Preț: 765.32 lei
- Preț: 370.04 lei
- 23% Preț: 624.04 lei
- 18% Preț: 1100.76 lei
- 15% Preț: 627.93 lei
- 15% Preț: 628.87 lei
- Preț: 389.09 lei
- Preț: 369.05 lei
- Preț: 383.88 lei
- Preț: 388.46 lei
- Preț: 530.66 lei
- 15% Preț: 628.87 lei
- Preț: 379.14 lei
- 15% Preț: 631.25 lei
- 24% Preț: 611.54 lei
- 18% Preț: 944.70 lei
- 20% Preț: 585.90 lei
- 15% Preț: 689.75 lei
- 18% Preț: 721.34 lei
- 15% Preț: 639.37 lei
- 15% Preț: 640.14 lei
- 18% Preț: 723.80 lei
- 15% Preț: 685.11 lei
Preț: 623.61 lei
Preț vechi: 733.66 lei
-15% Nou
Puncte Express: 935
Preț estimativ în valută:
119.36€ • 124.40$ • 99.36£
119.36€ • 124.40$ • 99.36£
Carte disponibilă
Livrare economică 16-30 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319309200
ISBN-10: 331930920X
Pagini: 304
Ilustrații: IX, 304 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.62 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Springer Optimization and Its Applications
Locul publicării:Cham, Switzerland
ISBN-10: 331930920X
Pagini: 304
Ilustrații: IX, 304 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.62 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Springer Optimization and Its Applications
Locul publicării:Cham, Switzerland
Cuprins
1. Introduction.- 2. Subgradient Projection Algorithm.- 3. The Mirror Descent Algorithm.- 4. Gradient Algorithm with a Smooth Objective Function.- 5. An Extension of the Gradient Algorithm.- 6. Weiszfeld's Method.- 7. The Extragradient Method for Convex Optimization.- 8. A Projected Subgradient Method for Nonsmooth Problems.- 9. Proximal Point Method in Hilbert Spaces.- 10. Proximal Point Methods in Metric Spaces.- 11. Maximal Monotone Operators and the Proximal Point Algorithm.- 12. The Extragradient Method for Solving Variational Inequalities.- 13. A Common Solution of a Family of Variational Inequalities.- 14. Continuous Subgradient Method.- 15. Penalty Methods.- 16. Newton's method.- References.- Index.
Recenzii
“The author studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space. Researchers and students will find this book instructive and informative. The book has contains 16 chapters … .” (Hans Benker, zbMATH 1347.65112, 2016)
Textul de pe ultima copertă
This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative.
This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s method.
This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s method.
Caracteristici
Examines approximate solutions of optimization problems in the presence of computational errors Reinforces basic principles with an introductory chapter Analyzes the gradient projection algorithm for minimization of convex and smooth functions Includes supplementary material: sn.pub/extras