Cantitate/Preț
Produs

Data Mining for Biomedical Applications: PAKDD 2006 Workshop, BioDM 2006, Singapore, April 9, 2006, Proceedings: Lecture Notes in Computer Science, cartea 3916

Editat de Jinyan Li, Qiang Yang, Ah-Hwee Tan
en Limba Engleză Paperback – 23 mar 2006

Din seria Lecture Notes in Computer Science

Preț: 32613 lei

Preț vechi: 40766 lei
-20% Nou

Puncte Express: 489

Preț estimativ în valută:
6242 6433$ 5270£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540331049
ISBN-10: 3540331042
Pagini: 168
Ilustrații: VIII, 155 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.25 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Bioinformatics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Keynote Talk.- Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions.- Database and Search.- A Database Search Algorithm for Identification of Peptides with Multiple Charges Using Tandem Mass Spectrometry.- Filtering Bio-sequence Based on Sequence Descriptor.- Automatic Extraction of Genomic Glossary Triggered by Query.- Frequent Subsequence-Based Protein Localization.- Bio Data Clustering.- gTRICLUSTER: A More General and Effective 3D Clustering Algorithm for Gene-Sample-Time Microarray Data.- Automatic Orthologous-Protein-Clustering from Multiple Complete-Genomes by the Best Reciprocal BLAST Hits.- A Novel Clustering Method for Analysis of Gene Microarray Expression Data.- Heterogeneous Clustering Ensemble Method for Combining Different Cluster Results.- In-silico Diagnosis.- Rule Learning for Disease-Specific Biomarker Discovery from Clinical Proteomic Mass Spectra.- Machine Learning Techniques and Chi-Square Feature Selection for Cancer Classification Using SAGE Gene Expression Profiles.- Generation of Comprehensible Hypotheses from Gene Expression Data.- Classification of Brain Glioma by Using SVMs Bagging with Feature Selection.- Missing Value Imputation Framework for Microarray Significant Gene Selection and Class Prediction.- Informative MicroRNA Expression Patterns for Cancer Classification.