Cantitate/Preț
Produs

Data Mining in Finance: Advances in Relational and Hybrid Methods: The Springer International Series in Engineering and Computer Science, cartea 547

Autor Boris Kovalerchuk, Evgenii Vityaev
en Limba Engleză Paperback – 20 mar 2013
Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book focuses specifically on relational data mining (RDM), which is a learning method able to learn more expressive rules than other symbolic approaches. RDM is thus better suited for financial mining, because it is able to make greater use of underlying domain knowledge. Relational data mining also has a better ability to explain the discovered rules - an ability critical for avoiding spurious patterns which inevitably arise when the number of variables examined is very large. The earlier algorithms for relational data mining, also known as inductive logic programming (ILP), suffer from a relative computational inefficiency and have rather limited tools for processing numerical data.
Data Mining in Finance introduces a new approach, combining relational data mining with the analysis of statistical significance of discovered rules. This reduces the search space and speeds up the algorithms. The book also presents interactive and fuzzy-logic tools for `mining' the knowledge from the experts, further reducing the search space.
Data Mining in Finance contains a number of practical examples of forecasting S&P 500, exchange rates, stock directions, and rating stocks for portfolio, allowing interested readers to start building their own models. This book is an excellent reference for researchers and professionals in the fields of artificial intelligence, machine learning, data mining, knowledge discovery, and applied mathematics.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 123651 lei  6-8 săpt.
  Springer Us – 20 mar 2013 123651 lei  6-8 săpt.
Hardback (1) 124132 lei  6-8 săpt.
  Springer Us – 30 apr 2000 124132 lei  6-8 săpt.

Din seria The Springer International Series in Engineering and Computer Science

Preț: 123651 lei

Preț vechi: 154564 lei
-20% Nou

Puncte Express: 1855

Preț estimativ în valută:
23667 24667$ 19701£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781475773323
ISBN-10: 1475773323
Pagini: 328
Ilustrații: XVI, 308 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.46 kg
Ediția:2000
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

The scope and methods of the study.- Numerical Data Mining Models and Financial Applications.- Rule-Based and Hybrid Financial Data Mining.- Relational Data Mining (RDM).- Financial Applications of Relational Data Mining.- Comparison of Performance of RDM and other methods in financial applications.- Fuzzy logic approach and its financial applications.