Cantitate/Preț
Produs

Data Science in Cybersecurity and Cyberthreat Intelligence: Intelligent Systems Reference Library, cartea 177

Editat de Leslie F. Sikos, Kim-Kwang Raymond Choo
en Limba Engleză Paperback – 6 feb 2021
This book presents a collection of state-of-the-art approaches to utilizing machine learning, formal knowledge bases and rule sets, and semantic reasoning to detect attacks on communication networks, including IoT infrastructures, to automate malicious code detection, to efficiently predict cyberattacks in enterprises, to identify malicious URLs and DGA-generated domain names, and to improve the security of mHealth wearables. This book details how analyzing the likelihood of vulnerability exploitation using machine learning classifiers can offer an alternative to traditional penetration testing solutions. In addition, the book describes a range of techniques that support data aggregation and data fusion to automate data-driven analytics in cyberthreat intelligence, allowing complex and previously unknown cyberthreats to be identified and classified, and countermeasures to be incorporated in novel incident response and intrusion detection mechanisms.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 112701 lei  6-8 săpt.
  Springer International Publishing – 6 feb 2021 112701 lei  6-8 săpt.
Hardback (1) 113299 lei  6-8 săpt.
  Springer International Publishing – 6 feb 2020 113299 lei  6-8 săpt.

Din seria Intelligent Systems Reference Library

Preț: 112701 lei

Preț vechi: 140875 lei
-20% Nou

Puncte Express: 1691

Preț estimativ în valută:
21576 22427$ 17888£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030387907
ISBN-10: 3030387909
Ilustrații: XII, 129 p. 45 illus., 25 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.21 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Intelligent Systems Reference Library

Locul publicării:Cham, Switzerland

Cuprins

The Formal Representation of Cyberthreats for Automated Reasoning.- A Logic Programming Approach to Predict Enterprise-Targeted Cyberattacks.- Discovering Malicious URLs Using Machine Learning Techniques.- Machine Learning and Big Data Processing for Cybersecurity Data Analysis.- Systematic Analysis of Security Implementation for Internet of Health Things in Mobile Health Networks.- Seven Pitfalls of Using Data Science in Cybersecurity.







Notă biografică

Dr. Leslie F. Sikos is a computer scientist specializing in network forensics and cybersecurity applications powered by artificial intelligence and data science. He has worked in both academia and the industry and acquired hands-on skills in datacenter and cloud infrastructures, cyberthreat management, and firewall configuration. He regularly contributes to major cybersecurity projects in collaboration with the Defence Science and Technology Group of the Australian Government, CSIRO’s Data61, and the CyberCRC. He is a reviewer of journals such as Computers & Security and Crime Science and chairs sessions at international conferences on AI in cybersecurity. Dr. Sikos holds professional certificates and is a member of industry-leading organizations, such as the ACM, the IEEE Special Interest Group on Big Data for Cyber Security and Privacy, and the IEEE Computer Society Technical Committee on Security and Privacy. 
Prof. Kim-Kwang Raymond Choo received a Ph.D. in Information Security in 2006 from the Queensland University of Technology, Australia. He currently holds a Cloud Technology Endowed Professorship at The University of Texas at San Antonio, USA, and has a courtesy appointment at the University of South Australia, Australia. He serves on the editorial board of Computers & Electrical Engineering, Computers & Security, Cluster Computing, Digital Investigation, IEEE Access, IEEE Blockchain Newsletter, IEEE Cloud Computing, IEEE Communications Magazine, IEEE Transactions on Big Data, Future Generation Computer Systems, Journal of Network and Computer Applications, PLoS ONE, Soft Computing, etc. He also serves as the Special Issue Guest Editor of ACM Transactions on Embedded Computing Systems (2017), ACM Transactions on Internet Technology (2016), Applied Soft Computing (2018), Computers & Electrical Engineering (2017), Computers & Security (2018), Digital Investigation (2016), Future Generation Computer Systems (2016, 2018), IEEE Access (2017, 2018), IEEE Cloud Computing (2015), IEEE Communications Magazine (2018), IEEE Network (2016), IEEE Transactions on Cloud Computing (2017), IEEE Transactions on Dependable and Secure Computing (2017), IEEE Transactions on Industrial Informatics (2018), Journal of Computational Science (2018), Journal of Computer and System Sciences (2017), Multimedia Tools and Applications (2017), Personal and Ubiquitous Computing (2017), Pervasive and Mobile Computing (2016), Wireless Personal Communications (2017), etc. In 2016, he was named the Cybersecurity Educator of the Year – APAC (Cybersecurity Excellence Awards are produced in cooperation with the Information Security Community on LinkedIn), and in 2015, he and his team won the Digital Forensics Research Challenge organized by the University of Erlangen-Nuremberg, Germany. He is the recipient of the 2018 UTSA College of Business Col. Jean Piccione and Lt. Col. Philip Piccione Endowed Research Award for Tenured Faculty, IEEE TrustCom 2018 Best Paper Award, ESORICS 2015 Best Research Paper Award, 2014 Highly Commended Award by the Australia New Zealand Policing Advisory Agency, Fulbright Scholarship in 2009, 2008 Australia Day Achievement Medallion, and British Computer Society’s Wilkes Award in 2008. He is also a Fellow of the Australian Computer Society and an IEEE Senior Member.
   ​

Textul de pe ultima copertă

This book presents a collection of state-of-the-art approaches to utilizing machine learning, formal knowledge bases and rule sets, and semantic reasoning to detect attacks on communication networks, including IoT infrastructures, to automate malicious code detection, to efficiently predict cyberattacks in enterprises, to identify malicious URLs and DGA-generated domain names, and to improve the security of mHealth wearables. This book details how analyzing the likelihood of vulnerability exploitation using machine learning classifiers can offer an alternative to traditional penetration testing solutions. In addition, the book describes a range of techniques that support data aggregation and data fusion to automate data-driven analytics in cyberthreat intelligence, allowing complex and previously unknown cyberthreats to be identified and classified, and countermeasures to be incorporated in novel incident response and intrusion detection mechanisms.

Caracteristici

Presents the state of the art in cybersecurity, and critically reviews existing approaches Addresses the intersection of two hot topics: cybersecurity and data science Includes an essential introduction to field