Cantitate/Preț
Produs

Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness: Monographs in Theoretical Computer Science. An EATCS Series, cartea 2

Autor K. Mehlhorn
en Limba Engleză Paperback – 25 dec 2011

Din seria Monographs in Theoretical Computer Science. An EATCS Series

Preț: 33354 lei

Preț vechi: 41693 lei
-20% Nou

Puncte Express: 500

Preț estimativ în valută:
6384 6579$ 5390£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642698996
ISBN-10: 3642698999
Pagini: 280
Ilustrații: XII, 262 p.
Dimensiuni: 170 x 242 x 15 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Monographs in Theoretical Computer Science. An EATCS Series

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Vol. 2: Graph Algorithms and NP-Completeness.- IV. Algorithms on Graphs.- 1. Graphs and their Representation in a Computer.- 2. Topological Sorting and the Representation Problem.- 3. Transitive Closure of Acyclic Digraphs.- 4. Systematic Exploration of a Graph.- 5. A Close Look at Depth First Search.- 6. Strongly-Connected and Biconnected Components of Directed and Undirected Graphs.- 7. Least Cost Paths in Networks.- 8. Minimum Spanning Trees.- 9. Maximum Network Flow and Applications.- 10. Planar Graphs.- 11. Exercises.- 12. Bibliographic Notes.- V. Path Problems in Graphs and Matrix Multiplication.- 1. General Path Problems.- 2. Two Special Cases: Least Cost Paths and Transitive Closure.- 3. General Path Problems and Matrix Multiplication.- 4. Matrix Multiplication in a Ring.- 5. Boolean Matrix Multiplication and Transitive Closure.- 6. (Min,+)-Product of Matrices and Least Cost Paths.- 7. A Lower Bound on the Monotone Complexity of Matrix Multiplication.- 8. Exercises.- 9. Bibliographic Notes.- VI. NP-Completeness.- 1. Turing Machines and Random Access Machines.- 2. Problems, Languages and Optimization Problems.- 3. Reductions and NP-complete Problems.- 4. The Satisfiability Problem is NP-complete.- 5. More NP-complete Problems.- 6. Solving NP-complete Problems.- 7. Approximation Algorithms.- 8. The Landscape of Complexity Classes.- 9. Exercises.- 10. Bibliographic Notes.- IX. Algorithmic Paradigms.