Data Warehousing and Knowledge Discovery: 8th International Conference, DaWaK 2006, Krakow, Poland, September 4-8, 2006, Proceedings: Lecture Notes in Computer Science, cartea 4081
Editat de A Min Tjoaen Limba Engleză Paperback – 30 aug 2006
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 345.44 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 17 aug 2005 | 345.44 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 30 aug 2006 | 662.48 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 662.48 lei
Preț vechi: 828.09 lei
-20% Nou
Puncte Express: 994
Preț estimativ în valută:
126.78€ • 130.80$ • 107.30£
126.78€ • 130.80$ • 107.30£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540377368
ISBN-10: 3540377360
Pagini: 604
Ilustrații: XVIII, 582 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.89 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540377360
Pagini: 604
Ilustrații: XVIII, 582 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.89 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
ETL Processing.- ETLDiff: A Semi-automatic Framework for Regression Test of ETL Software.- Applying Transformations to Model Driven Data Warehouses.- Bulk Loading a Linear Hash File.- Materialized View.- Dynamic View Selection for OLAP.- Preview: Optimizing View Materialization Cost in Spatial Data Warehouses.- Preprocessing for Fast Refreshing Materialized Views in DB2.- Multidimensional Design.- A Multiversion-Based Multidimensional Model.- Towards Multidimensional Requirement Design.- Multidimensional Design by Examples.- OLAP and Multidimensional Model.- Extending Visual OLAP for Handling Irregular Dimensional Hierarchies.- A Hierarchy-Driven Compression Technique for Advanced OLAP Visualization of Multidimensional Data Cubes.- Analysing Multi-dimensional Data Across Autonomous Data Warehouses.- What Time Is It in the Data Warehouse?.- Cubes Processing.- Computing Iceberg Quotient Cubes with Bounding.- An Effective Algorithm to Extract Dense Sub-cubes from a Large Sparse Cube.- On the Computation of Maximal-Correlated Cuboids Cells.- Data Warehouse Applications.- Warehousing Dynamic XML Documents.- Integrating Different Grain Levels in a Medical Data Warehouse Federation.- A Versioning Management Model for Ontology-Based Data Warehouses.- Data Warehouses in Grids with High QoS.- Mining Techniques (1).- Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods.- Efficient Mining of Dissociation Rules.- Optimized Rule Mining Through a Unified Framework for Interestingness Measures.- An Information-Theoretic Framework for Process Structure and Data Mining.- Mining Techniques (2).- Mixed Decision Trees: An Evolutionary Approach.- ITER: An Algorithm for Predictive Regression Rule Extraction.- COBRA: Closed Sequential Pattern Mining Using Bi-phase Reduction Approach.- Frequent Itemsets.- A Greedy Approach to Concurrent Processing of Frequent Itemset Queries.- Two New Techniques for Hiding Sensitive Itemsets and Their Empirical Evaluation.- EStream: Online Mining of Frequent Sets with Precise Error Guarantee.- Mining Data Streams.- Granularity Adaptive Density Estimation and on Demand Clustering of Concept-Drifting Data Streams.- Classification of Hidden Network Streams.- Adaptive Load Shedding for Mining Frequent Patterns from Data Streams.- An Approximate Approach for Mining Recently Frequent Itemsets from Data Streams.- Ontology-Based Mining.- Learning Classifiers from Distributed, Ontology-Extended Data Sources.- A Coherent Biomedical Literature Clustering and Summarization Approach Through Ontology-Enriched Graphical Representations.- Automatic Extraction for Creating a Lexical Repository of Abbreviations in the Biomedical Literature.- Clustering.- Priority-Based k-Anonymity Accomplished by Weighted Generalisation Structures.- Achieving k-Anonymity by Clustering in Attribute Hierarchical Structures.- Calculation of Density-Based Clustering Parameters Supported with Distributed Processing.- Cluster-Based Sampling Approaches to Imbalanced Data Distributions.- Advanced Mining Techniques.- Efficient Mining of Large Maximal Bicliques.- Automatic Image Annotation by Mining the Web.- Privacy Preserving Spatio-Temporal Clustering on Horizontally Partitioned Data.- Association Rules.- Discovering Semantic Sibling Associations from Web Documents with XTREEM-SP.- Difference Detection Between Two Contrast Sets.- EGEA : A New Hybrid Approach Towards Extracting Reduced Generic Association Rule Set (Application to AML Blood Cancer Therapy).- Miscellaneous Applications.- AISS: An Index for Non-timestamped Set Subsequence Queries.- A Method for Feature Selection on Microarray Data Using Support Vector Machine.- Providing Persistence for Sensor Data Streams by Remote WAL.- Classification.- Support Vector Machine Approach for Fast Classification.- Document Representations for Classification of Short Web-Page Descriptions.- GARC: A New Associative Classification Approach.- Conceptual Modeling for Classification Mining in Data Warehouses.