Cantitate/Preț
Produs

Deep Learning Applications for Cyber Security: Advanced Sciences and Technologies for Security Applications

Editat de Mamoun Alazab, MingJian Tang
en Limba Engleză Hardback – 30 aug 2019
Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points. 

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 87301 lei  39-44 zile
  Springer International Publishing – 30 aug 2020 87301 lei  39-44 zile
Hardback (1) 95401 lei  3-5 săpt.
  Springer International Publishing – 30 aug 2019 95401 lei  3-5 săpt.

Din seria Advanced Sciences and Technologies for Security Applications

Preț: 95401 lei

Preț vechi: 119252 lei
-20% Nou

Puncte Express: 1431

Preț estimativ în valută:
18259 19262$ 15216£

Carte disponibilă

Livrare economică 12-26 decembrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030130565
ISBN-10: 3030130568
Pagini: 260
Ilustrații: XX, 246 p. 78 illus., 54 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.54 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Advanced Sciences and Technologies for Security Applications

Locul publicării:Cham, Switzerland

Cuprins

Adversarial Attack, Defense, and Applications with Deep Learning Frameworks.-  Intelligent Situational-Awareness Architecture for Hybrid Emergency Power Systems in More Electric Aircraft.- Deep Learning in Person Re-identication for Cyber-Physical Surveillance Systems.- Deep Learning-based Detection of Electricity Theft Cyber-attacks in Smart Grid AMI Networks.- Using Convolutional Neural Networks for Classifying Malicious Network Traffic.- DBD: Deep Learning DGA-based Botnet Detection.- Enhanced Domain Generating Algorithm Detection Based on Deep Neural Networks.- Intrusion Detection in SDN-based Networks: Deep Recurrent Neural Network Approach.- SeqDroid: Obfuscated Android Malware Detection using Stacked Convolutional and Recurrent Neural Networks.- Forensic Detection of Child Exploitation Material using Deep Learning.- Toward Detection of Child Exploitation Material:  A Forensic Approach.

Recenzii

“Deep learning applications for cyber security addresses interdisciplinary topics that make deep learning a tool of major interest for cybersecurity. … This is why the book is recommended for researchers and students, as well as for all those interested in applying deep learning as part of cybersecurity products or platforms.” (Eugen Petac, Computing Reviews, May 7, 2021)

Notă biografică

Mamoun Alazab is an Associate Professor in the College of Engineering, IT and Environment at Charles Darwin University, Australia. He received his PhD degree in Computer Science from the Federation University of Australia, School of Science, Information Technology and Engineering. He is a cyber security researcher and practitioner with industry and academic experience. Alazab’s research is multidisciplinary that focuses on cyber security and digital forensics of computer systems with a focus on cybercrime detection and prevention. He has more than 100 research papers. He delivered many invited and keynote speeches, 22 events in 2018 alone. He convened and chaired more than 50 conferences and workshops. He works closely with government and industry on many projects. He is an editor on multiple editorial boards of international journals and a Senior Member of the IEEE.
MingJian Tang is a Senior Data Scientist at Singtel Optus, Australia. He received his PhD degree in Computer Science from La Trobe University, Melbourne, Australia, in 2009. Previously he was a Data Scientist at the Commonwealth Bank of Australia. He has participated in several industry-based research projects including unsupervised fraud detection, unstructured threat intelligence, cyber risk analysis and quantification, and big data analysis.


Textul de pe ultima copertă

Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points. 


Caracteristici

Bridges two popular areas (Deep Learning and Cyber Security) with self-contained material Fully self-contained with ample practical examples Provides wide coverage of popular Deep Learning tools and frameworks enabling the readers to quickly develop workable and advanced prototypes Combines academic excellence with extensive practical lessons