Deep Learning for Social Media Data Analytics: Studies in Big Data, cartea 113
Editat de Tzung-Pei Hong, Leticia Serrano-Estrada, Akrati Saxena, Anupam Biswasen Limba Engleză Hardback – 19 sep 2022
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 967.80 lei 6-8 săpt. | |
Springer International Publishing – 20 sep 2023 | 967.80 lei 6-8 săpt. | |
Hardback (1) | 973.92 lei 6-8 săpt. | |
Springer International Publishing – 19 sep 2022 | 973.92 lei 6-8 săpt. |
Din seria Studies in Big Data
- 20% Preț: 861.33 lei
- 20% Preț: 1131.71 lei
- 20% Preț: 586.40 lei
- 18% Preț: 973.77 lei
- 20% Preț: 1142.04 lei
- 20% Preț: 960.99 lei
- 20% Preț: 1411.17 lei
- 20% Preț: 1136.37 lei
- 20% Preț: 1441.06 lei
- 20% Preț: 1154.98 lei
- 20% Preț: 1146.88 lei
- 20% Preț: 1134.78 lei
- 20% Preț: 978.77 lei
- 20% Preț: 907.68 lei
- 20% Preț: 968.30 lei
- 15% Preț: 623.93 lei
- 20% Preț: 637.75 lei
- 20% Preț: 642.59 lei
- 20% Preț: 905.58 lei
- 20% Preț: 1020.64 lei
- 20% Preț: 1409.89 lei
- 18% Preț: 708.27 lei
- 20% Preț: 1027.52 lei
- 20% Preț: 1137.02 lei
- 20% Preț: 903.17 lei
- 20% Preț: 1591.53 lei
- 20% Preț: 327.16 lei
- 20% Preț: 1018.73 lei
- 20% Preț: 969.72 lei
- 20% Preț: 961.03 lei
- 20% Preț: 967.80 lei
- 20% Preț: 630.95 lei
Preț: 973.92 lei
Preț vechi: 1217.40 lei
-20% Nou
Puncte Express: 1461
Preț estimativ în valută:
186.59€ • 196.45$ • 154.02£
186.59€ • 196.45$ • 154.02£
Carte tipărită la comandă
Livrare economică 22 ianuarie-05 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031108686
ISBN-10: 303110868X
Pagini: 299
Ilustrații: X, 299 p. 86 illus., 65 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.61 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Big Data
Locul publicării:Cham, Switzerland
ISBN-10: 303110868X
Pagini: 299
Ilustrații: X, 299 p. 86 illus., 65 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.61 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Big Data
Locul publicării:Cham, Switzerland
Cuprins
Node Classification using Deep Learning in Social Networks.- NN-LP-CF: Neural Network based Link Prediction on Social Networks using Centrality-based Features.- Deep Learning for Code-Mixed Text Mining in Social Media: A Brief Review.- Convolutional and Recurrent Neural Networks for Opinion Mining on Drug Reviews.- Text-based Sentiment Analysis using Deep Learning Techniques.- Social Sentiment Analysis Using Features based Intelligent Learning Techniques.
Textul de pe ultima copertă
This edited book covers ongoing research in both theory and practical applications of using deep learning for social media data. Social networking platforms are overwhelmed by different contents, and their huge amounts of data have enormous potential to influence business, politics, security, planning and other social aspects. Recently, deep learning techniques have had many successful applications in the AI field. The research presented in this book emerges from the conviction that there is still much progress to be made toward exploiting deep learning in the context of social media data analytics. It includes fifteen chapters, organized into four sections that report on original research in network structure analysis, social media text analysis, user behaviour analysis and social media security analysis. This work could serve as a good reference for researchers, as well as a compilation of innovative ideas and solutions for practitioners interested in applying deep learning techniques to social media data analytics.
Caracteristici
Covers ongoing research in both theory and practical applications Presents recent research on deep learning for social media data analytics Shows challenges emerged from the volume of social media data