Deep Network Design for Medical Image Computing: Principles and Applications: The MICCAI Society book Series
Autor Haofu Liao, S. Kevin Zhou, Jiebo Luoen Limba Engleză Paperback – 29 aug 2022
This book will help graduate students and researchers develop a better understanding of the deep learning design principles for MIC and to apply them to their medical problems.
- Explains design principles of deep learning techniques for MIC
- Contains cutting-edge deep learning research on MIC
- Covers a broad range of MIC tasks, including the classification, detection, segmentation, registration, reconstruction and synthesis of medical images
Din seria The MICCAI Society book Series
- 20% Preț: 652.00 lei
- 24% Preț: 544.04 lei
- 27% Preț: 598.21 lei
- 25% Preț: 772.12 lei
- 33% Preț: 536.42 lei
- 36% Preț: 534.03 lei
- 37% Preț: 696.72 lei
- 36% Preț: 978.94 lei
- 5% Preț: 955.33 lei
- 32% Preț: 639.18 lei
- 37% Preț: 540.65 lei
- 32% Preț: 738.08 lei
- 31% Preț: 535.98 lei
- 28% Preț: 548.47 lei
- 19% Preț: 676.84 lei
- 33% Preț: 593.68 lei
Preț: 716.75 lei
Preț vechi: 895.94 lei
-20% Nou
Puncte Express: 1075
Preț estimativ în valută:
137.22€ • 143.17$ • 115.02£
137.22€ • 143.17$ • 115.02£
Carte tipărită la comandă
Livrare economică 12-26 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128243831
ISBN-10: 012824383X
Pagini: 264
Ilustrații: 75 illustrations (30 in full color)
Dimensiuni: 191 x 235 x 19 mm
Greutate: 0.46 kg
Editura: ELSEVIER SCIENCE
Seria The MICCAI Society book Series
ISBN-10: 012824383X
Pagini: 264
Ilustrații: 75 illustrations (30 in full color)
Dimensiuni: 191 x 235 x 19 mm
Greutate: 0.46 kg
Editura: ELSEVIER SCIENCE
Seria The MICCAI Society book Series
Cuprins
1. Introduction
2. Deep Learning Basics
3. Classification: Lesion and Disease Recognition
4. Detection: Vertebrae Localization and Identification
5. Segmentation: Intracardiac Echocardiography Contouring
6. Registration: 2D/3D Medical Image Registration
7. Reconstruction: Supervised Artifact Reduction
8. Reconstruction: Unsupervised Artifact Reduction
9. Synthesis: Novel View Synthesis
10. Challenges and Future Directions
2. Deep Learning Basics
3. Classification: Lesion and Disease Recognition
4. Detection: Vertebrae Localization and Identification
5. Segmentation: Intracardiac Echocardiography Contouring
6. Registration: 2D/3D Medical Image Registration
7. Reconstruction: Supervised Artifact Reduction
8. Reconstruction: Unsupervised Artifact Reduction
9. Synthesis: Novel View Synthesis
10. Challenges and Future Directions