Federated Learning for Medical Imaging: Principles, Algorithms, and Applications: The MICCAI Society book Series
Editat de Xiaoxiao Li, Ziyue Xu, Huazhu Fuen Limba Engleză Paperback – mar 2025
This book is a complete resource for computer scientists and engineers, as well as clinicians and medical care policy makers, wanting to learn about the application of federated learning to medical imaging.
- Presents the specific challenges in developing and deploying FL to medical imaging
- Explains the tools for developing or using FL
- Presents the state-of-the-art algorithms in the field with open source software on Github
- Gives insight into potential issues and solutions of building FL infrastructures for real-world application
- Informs researchers on the future research challenges of building real-world FL applications
Din seria The MICCAI Society book Series
- 20% Preț: 652.00 lei
- 24% Preț: 544.04 lei
- 27% Preț: 598.21 lei
- 25% Preț: 772.12 lei
- 33% Preț: 536.42 lei
- 36% Preț: 534.03 lei
- 37% Preț: 696.72 lei
- 36% Preț: 978.94 lei
- 5% Preț: 955.33 lei
- 20% Preț: 716.75 lei
- 32% Preț: 639.18 lei
- 37% Preț: 540.65 lei
- 32% Preț: 738.08 lei
- 31% Preț: 535.98 lei
- 28% Preț: 548.47 lei
- 19% Preț: 676.84 lei
Preț: 593.68 lei
Preț vechi: 883.91 lei
-33% Nou
Puncte Express: 891
Preț estimativ în valută:
113.63€ • 118.18$ • 95.22£
113.63€ • 118.18$ • 95.22£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443236419
ISBN-10: 0443236410
Pagini: 260
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE
Seria The MICCAI Society book Series
ISBN-10: 0443236410
Pagini: 260
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE
Seria The MICCAI Society book Series
Cuprins
Section I Fundamentals of FL
1. Background
2. FL Foundations
Section II Advanced Concepts and Methods for Heterogenous Settings
3. FL on Heterogeneous Data
4. FL on long-tail (label)
5. Personalized FL
6. Cross-domain FL
Section III Trustworthy FL
7. FL and Fairness
8. Differential Privacy
9. Security (Attack and Defense) in FL
10. FL + Uncertainty
11. Noisy learning in FL
Section IV Real-world Implementation and Application
12. Image Segmentation
13. Image Reconstruction and Registration
14. Frameworks and Platforms
Section V Afterword
15. Summary and Outlook
1. Background
2. FL Foundations
Section II Advanced Concepts and Methods for Heterogenous Settings
3. FL on Heterogeneous Data
4. FL on long-tail (label)
5. Personalized FL
6. Cross-domain FL
Section III Trustworthy FL
7. FL and Fairness
8. Differential Privacy
9. Security (Attack and Defense) in FL
10. FL + Uncertainty
11. Noisy learning in FL
Section IV Real-world Implementation and Application
12. Image Segmentation
13. Image Reconstruction and Registration
14. Frameworks and Platforms
Section V Afterword
15. Summary and Outlook