Less-Supervised Segmentation with CNNs: Scenarios, Models and Optimization: The MICCAI Society book Series
Editat de Jose Dolz, Ismail Ben Ayed, Christian Desrosiersen Limba Engleză Paperback – 30 noi 2024
This book is highly suitable for researchers and graduate students in computer vision, machine learning and medical imaging.
- Presents a good understanding of the different weak-supervision models (i.e., loss functions and priors) and the conceptual connections between them, providing an ability to choose the most appropriate model for a given application scenario
- Provides knowledge of several possible optimization strategies for each of the examined losses, giving the ability to choose the most appropriate optimizer for a given problem or application scenario
- Outlines the main strengths and weaknesses of state-of-the-art approaches
- Gives the tools to understand and use publicly-available code, as well as customize it for specific objectives
Din seria The MICCAI Society book Series
- 20% Preț: 652.00 lei
- 20% Preț: 753.36 lei
- 27% Preț: 597.27 lei
- 25% Preț: 770.92 lei
- 33% Preț: 535.61 lei
- 36% Preț: 533.21 lei
- 37% Preț: 695.65 lei
- 37% Preț: 977.41 lei
- 5% Preț: 935.99 lei
- 20% Preț: 702.25 lei
- 37% Preț: 539.81 lei
- 33% Preț: 725.70 lei
- 31% Preț: 535.14 lei
- 28% Preț: 547.62 lei
- 19% Preț: 675.80 lei
- 33% Preț: 592.76 lei
Preț: 543.20 lei
Preț vechi: 711.18 lei
-24% Nou
Puncte Express: 815
Preț estimativ în valută:
103.96€ • 107.98$ • 86.35£
103.96€ • 107.98$ • 86.35£
Carte disponibilă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780323956741
ISBN-10: 0323956742
Pagini: 275
Dimensiuni: 191 x 235 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
Seria The MICCAI Society book Series
ISBN-10: 0323956742
Pagini: 275
Dimensiuni: 191 x 235 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
Seria The MICCAI Society book Series
Public țintă
Researchers and graduate students in medical imaging, computer vision, machine learning.Cuprins
1. Introduction
2. Preliminaries
3. Different levels of supervision
4. Semi-supervised learning
5. Unsupervised domain adaptation
6. Weakly supervised segmentation
7. Few-shot learning
8. Unsupervised segmentation
9. Perspectives and future directions
2. Preliminaries
3. Different levels of supervision
4. Semi-supervised learning
5. Unsupervised domain adaptation
6. Weakly supervised segmentation
7. Few-shot learning
8. Unsupervised segmentation
9. Perspectives and future directions