Cantitate/Preț
Produs

Deterministic and Statistical Methods in Machine Learning: First International Workshop, Sheffield, UK, September 7-10, 2004. Revised Lectures: Lecture Notes in Computer Science, cartea 3635

Editat de Joab Winkler, Neil Lawrence, Mahesan Niranjan
en Limba Engleză Paperback – 11 oct 2005

Din seria Lecture Notes in Computer Science

Preț: 32975 lei

Preț vechi: 41219 lei
-20% Nou

Puncte Express: 495

Preț estimativ în valută:
6311 6555$ 5242£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540290735
ISBN-10: 3540290737
Pagini: 356
Ilustrații: VIII, 341 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.5 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Object Recognition via Local Patch Labelling.- Multi Channel Sequence Processing.- Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis.- Extensions of the Informative Vector Machine.- Efficient Communication by Breathing.- Guiding Local Regression Using Visualisation.- Transformations of Gaussian Process Priors.- Kernel Based Learning Methods: Regularization Networks and RBF Networks.- Redundant Bit Vectors for Quickly Searching High-Dimensional Regions.- Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis.- Ensemble Algorithms for Feature Selection.- Can Gaussian Process Regression Be Made Robust Against Model Mismatch?.- Understanding Gaussian Process Regression Using the Equivalent Kernel.- Integrating Binding Site Predictions Using Non-linear Classification Methods.- Support Vector Machine to Synthesise Kernels.- Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data.- Variational Bayes Estimation of Mixing Coefficients.- A Comparison of Condition Numbers for the Full Rank Least Squares Problem.- SVM Based Learning System for Information Extraction.