Cantitate/Preț
Produs

Dynamic Nonlinear Econometric Models: Asymptotic Theory

Autor Benedikt M. Pötscher, Ingmar R. Prucha
en Limba Engleză Hardback – 17 iul 1997
Many relationships in economics, and also in other fields, are both dynamic and nonlinear. A major advance in econometrics over the last fifteen years has been the development of a theory of estimation and inference for dy­ namic nonlinear models. This advance was accompanied by improvements in computer technology that facilitate the practical implementation of such estimation methods. In two articles in Econometric Reviews, i.e., Pötscher and Prucha {1991a,b), we provided -an expository discussion of the basic structure of the asymptotic theory of M-estimators in dynamic nonlinear models and a review of the literature up to the beginning of this decade. Among others, the class of M-estimators contains least mean distance estimators (includ­ ing maximum likelihood estimators) and generalized method of moment estimators. The present book expands and revises the discussion in those articles. It is geared towards the professional econometrician or statistician. Besides reviewing the literature we also presented in the above men­ tioned articles a number of then new results. One example is a consis­ tency result for the case where the identifiable uniqueness condition fails.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 121821 lei  6-8 săpt.
  Springer Berlin, Heidelberg – dec 2010 121821 lei  6-8 săpt.
Hardback (1) 122436 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 17 iul 1997 122436 lei  6-8 săpt.

Preț: 122436 lei

Preț vechi: 149313 lei
-18% Nou

Puncte Express: 1837

Preț estimativ în valută:
23432 24255$ 19805£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540628576
ISBN-10: 3540628576
Pagini: 328
Ilustrații: XI, 312 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.64 kg
Ediția:1997
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Introduction.- 2 Models, Data Generating Processes, and Estimators.- 3 Basic Structure of the Classical Consistency Proof.- 4 Further Comments on Consistency Proofs.- 5 Uniform Laws of Large Numbers.- 6 Approximation Concepts and Limit Theorems.- 7 Consistency: Catalogues of Assumptions.- 8 Basic Structure of the Asymptotic Normality Proof.- 9 Asymptotic Normality under Nonstandard Conditions.- 10 Central Limit Theorems.- 11 Asymptotic Normality: Catalogues of Assumptions.- 12 Heteroskedasticity and Autocorrelation Robust Estimation of Variance Covariance Matrices.- 13 Consistent Variance Covariance Matrix Estimation: Catalogues of Assumptions.- 14 Quasi Maximum Likelihood Estimation of Dynamic Nonlinear Simultaneous Systems.- 15 Concluding Remarks.- A Proofs for Chapter 3.- B Proofs for Chapter 4.- C Proofs for Chapter 5.- D Proofs for Chapter 6.- E Proofs for Chapter 7.- F Proofs for Chapter 8.- G Proofs for Chapter 10.- H Proofs for Chapter 11.- I Proofs for Chapter 12.- J Proofs for Chapter 13.- K Proofs for Chapter 14.- References.