Cantitate/Preț
Produs

Dynamical Properties of Baryon Resonances in the Holographic QCD: Springer Theses

Autor Daisuke Fujii
en Limba Engleză Hardback – 3 iul 2024
This book focuses on the study of the dynamical properties of hadron resonances, especially their transition processes by electromagnetic and strong interactions, by using the holographic quantum chromodynamics (QCD) model. Understanding the nature of hadrons leads to revealing non-perturbative phenomena that are prominent in the low-energy region of QCD. However, there remain many open questions regarding the nature of resonant states.
Holographic QCD is one of the most powerful methods to elucidate non-perturbative phenomena in QCD. We will attempt to investigate the dynamical properties of hadron resonances using the Sakai-Sugimoto model, which has achieved much success in the study of hadron physics. In particular, we studied the transition process of hadrons through the calculation of the form factors of them employing the approach of holographic QCD.
The book contains a systematic review of the treatment of hadron physics by the Sakai-Sugimoto model. It further covers how to calculate the form factors of baryons through the calculation of the n-point function from holographic QCD. It also includes remarks on the modern understanding of hadron physics. The method of collective coordinate quantization of solitons—Skyrmion and Instanton—is also explained in a concise manner. These are useful not only for students and young researchers interested in this field.
Citește tot Restrânge

Din seria Springer Theses

Preț: 71693 lei

Preț vechi: 87430 lei
-18% Nou

Puncte Express: 1075

Preț estimativ în valută:
13725 14115$ 11386£

Carte disponibilă

Livrare economică 29 ianuarie-12 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789819707546
ISBN-10: 9819707544
Pagini: 250
Ilustrații: XV, 213 p. 37 illus., 28 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.49 kg
Ediția:2024
Editura: Springer Nature Singapore
Colecția Springer
Seria Springer Theses

Locul publicării:Singapore, Singapore

Cuprins

Introduction.- Hadrons in the Sakai-Sugimoto model.- SU(Nf=2+1) Sakai-Sugimoto model.- Properties of nucleon resonances.- Summary and Outlook.



Notă biografică

Daisuke Fujii is a postdoctoral fellow at the Advanced Science Research Center of the Japan Atomic Energy Agency Sector of Nuclear Science Research. He received his Bachelor of Science in Physics from Tokyo University of Science in 2017, and his Master and Ph.D. in Physics from Osaka University in 2019 and 2023, respectively.  His work mainly focuses on the theoretical understanding of hadrons from quantum chromodynamics. The author aims to answer to the puzzle of why nucleons are able to stabilize themselves in the modern era, via the form factor of hadrons.

Textul de pe ultima copertă

This book focuses on the study of the dynamical properties of hadron resonances, especially their transition processes by electromagnetic and strong interactions, by using the holographic quantum chromodynamics (QCD) model. Understanding the nature of hadrons leads to revealing non-perturbative phenomena that are prominent in the low-energy region of QCD. However, there remain many open questions regarding the nature of resonant states.
Holographic QCD is one of the most powerful methods to elucidate non-perturbative phenomena in QCD. We will attempt to investigate the dynamical properties of hadron resonances using the Sakai-Sugimoto model, which has achieved much success in the study of hadron physics. In particular, we studied the transition process of hadrons through the calculation of the form factors of them employing the approach of holographic QCD.
The book contains a systematic review of the treatment of hadron physics by the Sakai-Sugimoto model. It further covers how to calculate the form factors of baryons through the calculation of the n-point function from holographic QCD. It also includes remarks on the modern understanding of hadron physics. The method of collective coordinate quantization of solitons—Skyrmion and Instanton—is also explained in a concise manner. These are useful not only for students and young researchers interested in this field.

Caracteristici

Nominated as an outstanding Ph.D. thesis by Osaka University Provides a comprehensive review of the hadrons described by the Sakai-Sugimoto model Discusses in depth the evaluation of form factors via the AdS/CFT correspondence